利用碳纳米管使混凝土功能化用于传感应用。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-06-16 DOI:10.3390/s25123755
Xiaohui Jia, Anna Lushnikova, Olivier Plé
{"title":"利用碳纳米管使混凝土功能化用于传感应用。","authors":"Xiaohui Jia, Anna Lushnikova, Olivier Plé","doi":"10.3390/s25123755","DOIUrl":null,"url":null,"abstract":"<p><p>This study advances the development of self-sensing concrete through functionalization with carbon nanotubes (CNTs) for structural health monitoring. Through experimental analyses, it relies on its dual responsiveness to mechanical and thermal stimuli. Three-point bending and thermal tests were systematically conducted on concrete samples with CNT concentrations ranging from 0 to 0.05 wt.% of cement, evaluated at 7- and 28-day curing periods. Mechanical testing demonstrated curing-dependent behavior: At 7 days, mechanical strength and electrical current response exhibited pronounced variability across CNTs loadings, with optimal balance achieved at 0.01% CNTs. At 28 days, the tests show that the mechanical properties are relatively stabilized, reaching the highest value at 0.006 wt.% CNTs and achieving the best electrical sensitivity at 0.01 wt.% CNTs. The thermal experiments revealed faster current modulation in the 7-day samples than in the 28-day counterparts, with intermediate CNT concentrations (e.g., 0.01 wt.%) showing a more sensitive response. The sensitivity was analyzed for both mechanical and thermal changes to further evaluate the feasibility of using CNT-reinforced concrete as a sensor material. Conductivity measurements on fully cured samples indicated that all samples exhibited electrical conductivities in the 10<sup>-4</sup> S/m range, suggesting semiconductive behavior, while 0.006 wt.% CNTs yielded the highest conductivity. Higher CNT content did not further improve conductivity, likely due to agglomeration disrupting the network. These findings confirm CNT-modified concrete's dual electromechanical and thermal responsiveness and support its potential as a multifunctional sensing material.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Carbon Nanotubes for the Functionalization of Concrete for Sensing Applications.\",\"authors\":\"Xiaohui Jia, Anna Lushnikova, Olivier Plé\",\"doi\":\"10.3390/s25123755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study advances the development of self-sensing concrete through functionalization with carbon nanotubes (CNTs) for structural health monitoring. Through experimental analyses, it relies on its dual responsiveness to mechanical and thermal stimuli. Three-point bending and thermal tests were systematically conducted on concrete samples with CNT concentrations ranging from 0 to 0.05 wt.% of cement, evaluated at 7- and 28-day curing periods. Mechanical testing demonstrated curing-dependent behavior: At 7 days, mechanical strength and electrical current response exhibited pronounced variability across CNTs loadings, with optimal balance achieved at 0.01% CNTs. At 28 days, the tests show that the mechanical properties are relatively stabilized, reaching the highest value at 0.006 wt.% CNTs and achieving the best electrical sensitivity at 0.01 wt.% CNTs. The thermal experiments revealed faster current modulation in the 7-day samples than in the 28-day counterparts, with intermediate CNT concentrations (e.g., 0.01 wt.%) showing a more sensitive response. The sensitivity was analyzed for both mechanical and thermal changes to further evaluate the feasibility of using CNT-reinforced concrete as a sensor material. Conductivity measurements on fully cured samples indicated that all samples exhibited electrical conductivities in the 10<sup>-4</sup> S/m range, suggesting semiconductive behavior, while 0.006 wt.% CNTs yielded the highest conductivity. Higher CNT content did not further improve conductivity, likely due to agglomeration disrupting the network. These findings confirm CNT-modified concrete's dual electromechanical and thermal responsiveness and support its potential as a multifunctional sensing material.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25123755\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123755","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过碳纳米管(CNTs)功能化推进自传感混凝土的发展,用于结构健康监测。通过实验分析,它依赖于对机械和热刺激的双重反应。在水泥碳纳米管浓度为0 - 0.05 wt.%的混凝土样品上系统地进行了三点弯曲和热测试,在7天和28天的养护期进行了评估。机械测试显示了固化相关行为:在第7天,机械强度和电流响应在CNTs负载下表现出明显的变化,在0.01% CNTs负载下达到最佳平衡。在28天,测试表明,力学性能相对稳定,在0.006 wt.% CNTs时达到最大值,在0.01 wt.% CNTs时达到最佳电灵敏度。热实验显示,7天样品中的电流调制速度比28天样品中的更快,中间碳纳米管浓度(例如0.01 wt.%)显示出更敏感的响应。对机械和热变化的敏感性进行了分析,以进一步评估使用碳纳米管增强混凝土作为传感器材料的可行性。对完全固化样品的电导率测量表明,所有样品的电导率都在10-4 S/m范围内,显示出半导体行为,而0.006 wt.%的CNTs产生了最高的电导率。更高的碳纳米管含量并没有进一步提高电导率,可能是由于团聚破坏了网络。这些发现证实了碳纳米管改性混凝土的双机电和热响应性,并支持其作为多功能传感材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Carbon Nanotubes for the Functionalization of Concrete for Sensing Applications.

This study advances the development of self-sensing concrete through functionalization with carbon nanotubes (CNTs) for structural health monitoring. Through experimental analyses, it relies on its dual responsiveness to mechanical and thermal stimuli. Three-point bending and thermal tests were systematically conducted on concrete samples with CNT concentrations ranging from 0 to 0.05 wt.% of cement, evaluated at 7- and 28-day curing periods. Mechanical testing demonstrated curing-dependent behavior: At 7 days, mechanical strength and electrical current response exhibited pronounced variability across CNTs loadings, with optimal balance achieved at 0.01% CNTs. At 28 days, the tests show that the mechanical properties are relatively stabilized, reaching the highest value at 0.006 wt.% CNTs and achieving the best electrical sensitivity at 0.01 wt.% CNTs. The thermal experiments revealed faster current modulation in the 7-day samples than in the 28-day counterparts, with intermediate CNT concentrations (e.g., 0.01 wt.%) showing a more sensitive response. The sensitivity was analyzed for both mechanical and thermal changes to further evaluate the feasibility of using CNT-reinforced concrete as a sensor material. Conductivity measurements on fully cured samples indicated that all samples exhibited electrical conductivities in the 10-4 S/m range, suggesting semiconductive behavior, while 0.006 wt.% CNTs yielded the highest conductivity. Higher CNT content did not further improve conductivity, likely due to agglomeration disrupting the network. These findings confirm CNT-modified concrete's dual electromechanical and thermal responsiveness and support its potential as a multifunctional sensing material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信