基于统计差分表示的异构变化检测变压器。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-06-15 DOI:10.3390/s25123740
Xinhui Cao, Minggang Dong, Xingping Liu, Jiaming Gong, Hanhong Zheng
{"title":"基于统计差分表示的异构变化检测变压器。","authors":"Xinhui Cao, Minggang Dong, Xingping Liu, Jiaming Gong, Hanhong Zheng","doi":"10.3390/s25123740","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneous change detection refers to using image data from different sensors or modalities to detect change information in the same region by comparing images of the same region at different time periods. In recent years, methods based on deep learning and domain adaptation have become mainstream, which can effectively improve the accuracy and robustness of heterogeneous image change detection through feature alignment and multimodal data fusion. However, a lack of credible labels has stopped most current learning-based heterogeneous change detection methods from being put into application. To overcome this limitation, a weakly supervised heterogeneous change detection framework with a structure similarity-guided sample generating (S3G2) strategy is proposed, which employs differential structure similarity to acquire prior information for iteratively generating reliable pseudo-labels. Moreover, a Statistical Difference representation Transformer (SDFormer) is proposed to lower the influence of modality difference between bitemporal heterogeneous imagery and better extract relevant change information. Extensive experiments have been carried out to fully investigate the influences of inner manual parameters and compare them with state-of-the-art methods in several public heterogeneous change detection data sets. The experimental results indicate that the proposed methods have shown competitive performance.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Difference Representation-Based Transformer for Heterogeneous Change Detection.\",\"authors\":\"Xinhui Cao, Minggang Dong, Xingping Liu, Jiaming Gong, Hanhong Zheng\",\"doi\":\"10.3390/s25123740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heterogeneous change detection refers to using image data from different sensors or modalities to detect change information in the same region by comparing images of the same region at different time periods. In recent years, methods based on deep learning and domain adaptation have become mainstream, which can effectively improve the accuracy and robustness of heterogeneous image change detection through feature alignment and multimodal data fusion. However, a lack of credible labels has stopped most current learning-based heterogeneous change detection methods from being put into application. To overcome this limitation, a weakly supervised heterogeneous change detection framework with a structure similarity-guided sample generating (S3G2) strategy is proposed, which employs differential structure similarity to acquire prior information for iteratively generating reliable pseudo-labels. Moreover, a Statistical Difference representation Transformer (SDFormer) is proposed to lower the influence of modality difference between bitemporal heterogeneous imagery and better extract relevant change information. Extensive experiments have been carried out to fully investigate the influences of inner manual parameters and compare them with state-of-the-art methods in several public heterogeneous change detection data sets. The experimental results indicate that the proposed methods have shown competitive performance.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25123740\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123740","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

异质变化检测是指利用不同传感器或模态的图像数据,通过对同一区域不同时间段的图像进行比较,检测同一区域的变化信息。近年来,基于深度学习和领域自适应的方法成为主流,通过特征对齐和多模态数据融合可以有效提高异构图像变化检测的准确性和鲁棒性。然而,缺乏可信的标签阻碍了当前大多数基于学习的异构变化检测方法的应用。为了克服这一限制,提出了一种带有结构相似度引导样本生成(S3G2)策略的弱监督异构变化检测框架,该框架利用差分结构相似度获取先验信息,迭代生成可靠的伪标签。此外,为了降低双时相异构图像间模态差异的影响,更好地提取相关变化信息,提出了一种统计差分表示转换器(SDFormer)。我们进行了大量的实验,以充分研究内部手动参数的影响,并将其与几个公开的异构变化检测数据集中最先进的方法进行比较。实验结果表明,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Difference Representation-Based Transformer for Heterogeneous Change Detection.

Heterogeneous change detection refers to using image data from different sensors or modalities to detect change information in the same region by comparing images of the same region at different time periods. In recent years, methods based on deep learning and domain adaptation have become mainstream, which can effectively improve the accuracy and robustness of heterogeneous image change detection through feature alignment and multimodal data fusion. However, a lack of credible labels has stopped most current learning-based heterogeneous change detection methods from being put into application. To overcome this limitation, a weakly supervised heterogeneous change detection framework with a structure similarity-guided sample generating (S3G2) strategy is proposed, which employs differential structure similarity to acquire prior information for iteratively generating reliable pseudo-labels. Moreover, a Statistical Difference representation Transformer (SDFormer) is proposed to lower the influence of modality difference between bitemporal heterogeneous imagery and better extract relevant change information. Extensive experiments have been carried out to fully investigate the influences of inner manual parameters and compare them with state-of-the-art methods in several public heterogeneous change detection data sets. The experimental results indicate that the proposed methods have shown competitive performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信