嵌入式系统软件可信平台模块(SWTPM)资源共享方案。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-06-19 DOI:10.3390/s25123828
Da-Chuan Chen, Guan-Ruei Chen, Yu-Ping Liao
{"title":"嵌入式系统软件可信平台模块(SWTPM)资源共享方案。","authors":"Da-Chuan Chen, Guan-Ruei Chen, Yu-Ping Liao","doi":"10.3390/s25123828","DOIUrl":null,"url":null,"abstract":"<p><p>Embedded system networks are widely deployed across various domains and often perform mission-critical tasks, making it essential for all nodes within the system to be trustworthy. Traditionally, each node is equipped with a discrete Trusted Platform Module (dTPM) to ensure network-wide trustworthiness. However, this study proposes a cost-effective system architecture that deploys software-based TPMs (SWTPMs) on the majority of nodes, while reserving dTPMs for a few central nodes to maintain overall system integrity. The proposed architecture employs IBMACS for system integrity reporting. In addition, a database-based anomaly detection (AD) agent is developed to identify and isolate untrusted nodes. A traffic anomaly detection agent is also introduced to monitor communication between servers and clients, ensuring that traffic patterns remain normal. Finally, a custom measurement kernel is implemented, along with an activation agent, to enforce a measured boot process for custom applications during startup. This architecture is designed to safeguard mission-critical embedded systems from malicious threats while reducing deployment costs.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software Trusted Platform Module (SWTPM) Resource Sharing Scheme for Embedded Systems.\",\"authors\":\"Da-Chuan Chen, Guan-Ruei Chen, Yu-Ping Liao\",\"doi\":\"10.3390/s25123828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Embedded system networks are widely deployed across various domains and often perform mission-critical tasks, making it essential for all nodes within the system to be trustworthy. Traditionally, each node is equipped with a discrete Trusted Platform Module (dTPM) to ensure network-wide trustworthiness. However, this study proposes a cost-effective system architecture that deploys software-based TPMs (SWTPMs) on the majority of nodes, while reserving dTPMs for a few central nodes to maintain overall system integrity. The proposed architecture employs IBMACS for system integrity reporting. In addition, a database-based anomaly detection (AD) agent is developed to identify and isolate untrusted nodes. A traffic anomaly detection agent is also introduced to monitor communication between servers and clients, ensuring that traffic patterns remain normal. Finally, a custom measurement kernel is implemented, along with an activation agent, to enforce a measured boot process for custom applications during startup. This architecture is designed to safeguard mission-critical embedded systems from malicious threats while reducing deployment costs.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25123828\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123828","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

嵌入式系统网络广泛部署在各个领域,并经常执行关键任务,因此系统内的所有节点都必须值得信赖。传统上,每个节点都配备一个离散的可信平台模块(dTPM)来确保网络范围内的可信度。然而,本研究提出了一种经济有效的系统架构,在大多数节点上部署基于软件的tpm (swtpm),同时为少数中心节点保留dtpm,以保持整个系统的完整性。所建议的体系结构使用IBMACS进行系统完整性报告。此外,还开发了基于数据库的异常检测(AD)代理来识别和隔离不可信节点。还引入了流量异常检测代理来监视服务器和客户端之间的通信,确保流量模式保持正常。最后,实现一个自定义度量内核以及一个激活代理,以便在启动期间为自定义应用程序执行一个度量的启动过程。该架构旨在保护关键任务嵌入式系统免受恶意威胁,同时降低部署成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software Trusted Platform Module (SWTPM) Resource Sharing Scheme for Embedded Systems.

Embedded system networks are widely deployed across various domains and often perform mission-critical tasks, making it essential for all nodes within the system to be trustworthy. Traditionally, each node is equipped with a discrete Trusted Platform Module (dTPM) to ensure network-wide trustworthiness. However, this study proposes a cost-effective system architecture that deploys software-based TPMs (SWTPMs) on the majority of nodes, while reserving dTPMs for a few central nodes to maintain overall system integrity. The proposed architecture employs IBMACS for system integrity reporting. In addition, a database-based anomaly detection (AD) agent is developed to identify and isolate untrusted nodes. A traffic anomaly detection agent is also introduced to monitor communication between servers and clients, ensuring that traffic patterns remain normal. Finally, a custom measurement kernel is implemented, along with an activation agent, to enforce a measured boot process for custom applications during startup. This architecture is designed to safeguard mission-critical embedded systems from malicious threats while reducing deployment costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信