Olga Dos Santos Duarte, Gustavo Jacinto, Mário Véstias, Rui Policarpo Duarte
{"title":"智能运动砝码。","authors":"Olga Dos Santos Duarte, Gustavo Jacinto, Mário Véstias, Rui Policarpo Duarte","doi":"10.3390/s25123808","DOIUrl":null,"url":null,"abstract":"<p><p>Weightlifting is a common fitness activity and can be practiced individually without supervision. However, performing regular weightlifting exercises without any form of feedback can lead to serious injuries. To counter this, this work proposes a different approach to automatic weightlifting supervision off-the-person. The proposed embedded system is coupled to the weights and evaluates if they follow the correct trajectory in real time. The system is based on a low-power embedded System-on-a-Chip to perform the classification of the correctness of physical exercises using a Convolutional Neural Network with data from the embedded IMU. It is a low-cost solution and can be adapted to the characteristics of specific exercises to fine-tune the performance of the athlete. Experimental results show real-time monitoring capability with an average accuracy close to 95%. To favor its use, the prototypes have been enclosed on a custom 3D case and validated in an operational environment. All research outputs, developments, and engineering models are publicly available.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Sports Weights.\",\"authors\":\"Olga Dos Santos Duarte, Gustavo Jacinto, Mário Véstias, Rui Policarpo Duarte\",\"doi\":\"10.3390/s25123808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Weightlifting is a common fitness activity and can be practiced individually without supervision. However, performing regular weightlifting exercises without any form of feedback can lead to serious injuries. To counter this, this work proposes a different approach to automatic weightlifting supervision off-the-person. The proposed embedded system is coupled to the weights and evaluates if they follow the correct trajectory in real time. The system is based on a low-power embedded System-on-a-Chip to perform the classification of the correctness of physical exercises using a Convolutional Neural Network with data from the embedded IMU. It is a low-cost solution and can be adapted to the characteristics of specific exercises to fine-tune the performance of the athlete. Experimental results show real-time monitoring capability with an average accuracy close to 95%. To favor its use, the prototypes have been enclosed on a custom 3D case and validated in an operational environment. All research outputs, developments, and engineering models are publicly available.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25123808\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123808","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Weightlifting is a common fitness activity and can be practiced individually without supervision. However, performing regular weightlifting exercises without any form of feedback can lead to serious injuries. To counter this, this work proposes a different approach to automatic weightlifting supervision off-the-person. The proposed embedded system is coupled to the weights and evaluates if they follow the correct trajectory in real time. The system is based on a low-power embedded System-on-a-Chip to perform the classification of the correctness of physical exercises using a Convolutional Neural Network with data from the embedded IMU. It is a low-cost solution and can be adapted to the characteristics of specific exercises to fine-tune the performance of the athlete. Experimental results show real-time monitoring capability with an average accuracy close to 95%. To favor its use, the prototypes have been enclosed on a custom 3D case and validated in an operational environment. All research outputs, developments, and engineering models are publicly available.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.