基于极大似然算法的多波束频率波束扫描信号相干DOA估计。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-06-17 DOI:10.3390/s25123791
Yifan Yang, Rihui Zeng, Qingqing Zhu, Weijin Fang, Biyun Ma, Yide Wang
{"title":"基于极大似然算法的多波束频率波束扫描信号相干DOA估计。","authors":"Yifan Yang, Rihui Zeng, Qingqing Zhu, Weijin Fang, Biyun Ma, Yide Wang","doi":"10.3390/s25123791","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-Beam frequency scanning leaky-wave antennas (FBS-LWAs) offer a viable solution for hardware miniaturization in direction-of-arrival (DOA) estimation systems. However, the presence of multiple spatial harmonics results in responses in multiple directions for a given incident source, introducing estimation ambiguity and significantly challenging accurate DOA estimation. Moreover, due to the nonlinear frequency response of the FBS-LWA, its response matrix does not satisfy the Vandermonde structure, which renders common rank-recovery techniques ineffective for processing coherent signals. As a result, the DOA estimation of coherent sources using multi-beam FBS-LWAs remains an open and challenging problem. To address this issue, this paper proposes a novel DOA estimation method for coherent signals based on multi-beam frequency scanning leaky-wave antennas. First, the received signals are transformed into the frequency domain via fast Fourier transform (FFT) to construct the signal data matrix from which the covariance matrix is computed.Then, conventional beamforming (CBF) is employed to obtain an initial estimate of the angle set, which will be further refined by a smaller grid to form a candidate angle set. Finally, a maximum likelihood algorithm based on the stochastic principle (Sto-ML) is used to suppress the interference of the parasitic directions and select the final DOA estimates from the candidate angle set. Simulation results show that the proposed method effectively mitigates the impact of parasitic directions and achieves an accurate DOA estimation of multiple coherent sources, even under both low and medium-to-high signal-to-noise ratio (SNR) conditions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196879/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coherent DOA Estimation of Multi-Beam Frequency Beam-Scanning LWAs Based on Maximum Likelihood Algorithm.\",\"authors\":\"Yifan Yang, Rihui Zeng, Qingqing Zhu, Weijin Fang, Biyun Ma, Yide Wang\",\"doi\":\"10.3390/s25123791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-Beam frequency scanning leaky-wave antennas (FBS-LWAs) offer a viable solution for hardware miniaturization in direction-of-arrival (DOA) estimation systems. However, the presence of multiple spatial harmonics results in responses in multiple directions for a given incident source, introducing estimation ambiguity and significantly challenging accurate DOA estimation. Moreover, due to the nonlinear frequency response of the FBS-LWA, its response matrix does not satisfy the Vandermonde structure, which renders common rank-recovery techniques ineffective for processing coherent signals. As a result, the DOA estimation of coherent sources using multi-beam FBS-LWAs remains an open and challenging problem. To address this issue, this paper proposes a novel DOA estimation method for coherent signals based on multi-beam frequency scanning leaky-wave antennas. First, the received signals are transformed into the frequency domain via fast Fourier transform (FFT) to construct the signal data matrix from which the covariance matrix is computed.Then, conventional beamforming (CBF) is employed to obtain an initial estimate of the angle set, which will be further refined by a smaller grid to form a candidate angle set. Finally, a maximum likelihood algorithm based on the stochastic principle (Sto-ML) is used to suppress the interference of the parasitic directions and select the final DOA estimates from the candidate angle set. Simulation results show that the proposed method effectively mitigates the impact of parasitic directions and achieves an accurate DOA estimation of multiple coherent sources, even under both low and medium-to-high signal-to-noise ratio (SNR) conditions.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25123791\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123791","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

多波束频率扫描漏波天线(FBS-LWAs)为到达方向(DOA)估计系统的硬件小型化提供了可行的解决方案。然而,对于给定的入射源,多个空间谐波的存在会导致多个方向的响应,从而引入估计歧义,极大地挑战了准确的DOA估计。此外,由于FBS-LWA的非线性频率响应,其响应矩阵不满足Vandermonde结构,使得普通的秩恢复技术无法处理相干信号。因此,利用多波束FBS-LWAs估计相干源的DOA仍然是一个开放和具有挑战性的问题。针对这一问题,本文提出了一种基于多波束扫描漏波天线的相干信号DOA估计方法。首先,通过快速傅里叶变换(FFT)将接收到的信号变换到频域,构造信号数据矩阵,并由此计算协方差矩阵。然后,采用常规波束形成(CBF)方法获得角度集的初始估计,再通过更小的网格进一步细化,形成候选角度集;最后,利用基于随机原理的极大似然算法(Sto-ML)抑制寄生方向的干扰,并从候选角度集中选择最终的DOA估计。仿真结果表明,该方法在低信噪比和中高信噪比条件下都能有效地减轻寄生方向的影响,实现多相干源的精确DOA估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherent DOA Estimation of Multi-Beam Frequency Beam-Scanning LWAs Based on Maximum Likelihood Algorithm.

Multi-Beam frequency scanning leaky-wave antennas (FBS-LWAs) offer a viable solution for hardware miniaturization in direction-of-arrival (DOA) estimation systems. However, the presence of multiple spatial harmonics results in responses in multiple directions for a given incident source, introducing estimation ambiguity and significantly challenging accurate DOA estimation. Moreover, due to the nonlinear frequency response of the FBS-LWA, its response matrix does not satisfy the Vandermonde structure, which renders common rank-recovery techniques ineffective for processing coherent signals. As a result, the DOA estimation of coherent sources using multi-beam FBS-LWAs remains an open and challenging problem. To address this issue, this paper proposes a novel DOA estimation method for coherent signals based on multi-beam frequency scanning leaky-wave antennas. First, the received signals are transformed into the frequency domain via fast Fourier transform (FFT) to construct the signal data matrix from which the covariance matrix is computed.Then, conventional beamforming (CBF) is employed to obtain an initial estimate of the angle set, which will be further refined by a smaller grid to form a candidate angle set. Finally, a maximum likelihood algorithm based on the stochastic principle (Sto-ML) is used to suppress the interference of the parasitic directions and select the final DOA estimates from the candidate angle set. Simulation results show that the proposed method effectively mitigates the impact of parasitic directions and achieves an accurate DOA estimation of multiple coherent sources, even under both low and medium-to-high signal-to-noise ratio (SNR) conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信