{"title":"利用现代低功耗微控制器实现ORB加速的新方法。","authors":"Jorge Aráez, Santiago Real, Alvaro Araujo","doi":"10.3390/s25123796","DOIUrl":null,"url":null,"abstract":"<p><p>A key component in visual Simultaneous Location And Mapping (SLAM) systems is feature extraction and description. One common algorithm that accomplishes this purpose is Oriented FAST and Rotated BRIEF (ORB), which is used in state-of-the-art SLAM systems like ORB-SLAM. While it is faster than other feature detectors like SIFT (340 times faster) or SURF (15 times faster), it is one of the most computationally expensive algorithms in these types of systems. This problem has commonly been solved by delegating this task to hardware-accelerated solutions like FPGAs or ASICs. While this solution is useful, it incurs a greater economical cost. This work proposes a solution for feature extraction and description based on a modern low-power mainstream microcontroller. The execution time of ORB, along with power consumption, are analyzed in relation to the number of feature points and internal variables. The results show a maximum of 0.6 s for ORB execution in 1241 × 376 resolution images, which is significantly slower than other hardware-accelerated solutions but remains viable for certain applications. Additionally, the power consumption ranges between 30 and 40 milliwatts, which is lower than FPGA solutions. This work also allows for future optimizations that will improve the results of this paper.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Approach to ORB Acceleration Using a Modern Low-Power Microcontroller.\",\"authors\":\"Jorge Aráez, Santiago Real, Alvaro Araujo\",\"doi\":\"10.3390/s25123796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A key component in visual Simultaneous Location And Mapping (SLAM) systems is feature extraction and description. One common algorithm that accomplishes this purpose is Oriented FAST and Rotated BRIEF (ORB), which is used in state-of-the-art SLAM systems like ORB-SLAM. While it is faster than other feature detectors like SIFT (340 times faster) or SURF (15 times faster), it is one of the most computationally expensive algorithms in these types of systems. This problem has commonly been solved by delegating this task to hardware-accelerated solutions like FPGAs or ASICs. While this solution is useful, it incurs a greater economical cost. This work proposes a solution for feature extraction and description based on a modern low-power mainstream microcontroller. The execution time of ORB, along with power consumption, are analyzed in relation to the number of feature points and internal variables. The results show a maximum of 0.6 s for ORB execution in 1241 × 376 resolution images, which is significantly slower than other hardware-accelerated solutions but remains viable for certain applications. Additionally, the power consumption ranges between 30 and 40 milliwatts, which is lower than FPGA solutions. This work also allows for future optimizations that will improve the results of this paper.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25123796\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123796","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A New Approach to ORB Acceleration Using a Modern Low-Power Microcontroller.
A key component in visual Simultaneous Location And Mapping (SLAM) systems is feature extraction and description. One common algorithm that accomplishes this purpose is Oriented FAST and Rotated BRIEF (ORB), which is used in state-of-the-art SLAM systems like ORB-SLAM. While it is faster than other feature detectors like SIFT (340 times faster) or SURF (15 times faster), it is one of the most computationally expensive algorithms in these types of systems. This problem has commonly been solved by delegating this task to hardware-accelerated solutions like FPGAs or ASICs. While this solution is useful, it incurs a greater economical cost. This work proposes a solution for feature extraction and description based on a modern low-power mainstream microcontroller. The execution time of ORB, along with power consumption, are analyzed in relation to the number of feature points and internal variables. The results show a maximum of 0.6 s for ORB execution in 1241 × 376 resolution images, which is significantly slower than other hardware-accelerated solutions but remains viable for certain applications. Additionally, the power consumption ranges between 30 and 40 milliwatts, which is lower than FPGA solutions. This work also allows for future optimizations that will improve the results of this paper.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.