基于毫米波雷达的路面识别多特征融合方法。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-06-18 DOI:10.3390/s25123802
Zhimin Qiu, Jinju Shao, Dong Guo, Xuehao Yin, Zhipeng Zhai, Zhibing Duan, Yi Xu
{"title":"基于毫米波雷达的路面识别多特征融合方法。","authors":"Zhimin Qiu, Jinju Shao, Dong Guo, Xuehao Yin, Zhipeng Zhai, Zhibing Duan, Yi Xu","doi":"10.3390/s25123802","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid progress of intelligent vehicle technology, the accurate recognition of road surface types and conditions has emerged as a crucial technology for improving the safety and comfort levels in autonomous driving. This paper puts forward a multi-feature fusion approach for road surface identification. Relying on a 24 GHz millimeter-wave radar, statistical features are combined with wavelet transform techniques. This combination enables the efficient classification of diverse road surface types and conditions. Firstly, the discriminability of radar echo signals corresponding to different road surface types is verified via statistical analysis. During this process, six-dimensional statistical features that display remarkable differences are extracted. Subsequently, a novel radar data reconstruction approach is presented. This method involves fitting discrete echo signals into coordinate curves. Then, discrete wavelet transform is utilized to extract both low-frequency and high-frequency features, thereby strengthening the spatio-temporal correlation of the signals. The low-frequency information serves to capture general characteristics, whereas the high-frequency information reflects detailed features. The statistical features and wavelet transform features are fused at the feature level, culminating in the formation of a 56-dimensional feature vector. Four machine learning models, namely the Wide Neural Network (WNN), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Kernel methods, are employed as classifiers for both training and testing purposes. Experiments were executed with 8865 samples obtained from a real-vehicle platform. These samples comprehensively represented 12 typical road surface types and conditions. The experimental outcomes clearly indicate that the proposed method is capable of attaining a road surface type identification accuracy as high as 94.2%. As a result, it furnishes an efficient and cost-efficient road perception solution for intelligent driving systems. This research validates the potential application of millimeter-wave radar in intricate road environments and offers both theoretical underpinning and practical support for the advancement of autonomous driving technology.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar.\",\"authors\":\"Zhimin Qiu, Jinju Shao, Dong Guo, Xuehao Yin, Zhipeng Zhai, Zhibing Duan, Yi Xu\",\"doi\":\"10.3390/s25123802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid progress of intelligent vehicle technology, the accurate recognition of road surface types and conditions has emerged as a crucial technology for improving the safety and comfort levels in autonomous driving. This paper puts forward a multi-feature fusion approach for road surface identification. Relying on a 24 GHz millimeter-wave radar, statistical features are combined with wavelet transform techniques. This combination enables the efficient classification of diverse road surface types and conditions. Firstly, the discriminability of radar echo signals corresponding to different road surface types is verified via statistical analysis. During this process, six-dimensional statistical features that display remarkable differences are extracted. Subsequently, a novel radar data reconstruction approach is presented. This method involves fitting discrete echo signals into coordinate curves. Then, discrete wavelet transform is utilized to extract both low-frequency and high-frequency features, thereby strengthening the spatio-temporal correlation of the signals. The low-frequency information serves to capture general characteristics, whereas the high-frequency information reflects detailed features. The statistical features and wavelet transform features are fused at the feature level, culminating in the formation of a 56-dimensional feature vector. Four machine learning models, namely the Wide Neural Network (WNN), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Kernel methods, are employed as classifiers for both training and testing purposes. Experiments were executed with 8865 samples obtained from a real-vehicle platform. These samples comprehensively represented 12 typical road surface types and conditions. The experimental outcomes clearly indicate that the proposed method is capable of attaining a road surface type identification accuracy as high as 94.2%. As a result, it furnishes an efficient and cost-efficient road perception solution for intelligent driving systems. This research validates the potential application of millimeter-wave radar in intricate road environments and offers both theoretical underpinning and practical support for the advancement of autonomous driving technology.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25123802\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123802","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着智能汽车技术的快速发展,准确识别路面类型和路况已成为提高自动驾驶安全性和舒适性的关键技术。提出了一种多特征融合的路面识别方法。依托24 GHz毫米波雷达,统计特征与小波变换技术相结合。这种组合可以有效地对不同的路面类型和状况进行分类。首先,通过统计分析验证了不同路面类型对应的雷达回波信号的可分辨性;在此过程中,提取出具有显著差异的六维统计特征。随后,提出了一种新的雷达数据重建方法。该方法将离散回波信号拟合成坐标曲线。然后利用离散小波变换同时提取低频和高频特征,从而增强信号的时空相关性。低频信息用于捕获一般特征,而高频信息则反映详细特征。统计特征和小波变换特征在特征层进行融合,最终形成56维特征向量。四种机器学习模型,即宽神经网络(WNN), k近邻(KNN),支持向量机(SVM)和核方法,被用作训练和测试目的的分类器。实验采用了8865个实车平台采集的样品。这些样本综合代表了12种典型的路面类型和状况。实验结果清楚地表明,该方法能够达到高达94.2%的路面类型识别精度。因此,它为智能驾驶系统提供了一种高效且经济的道路感知解决方案。该研究验证了毫米波雷达在复杂道路环境中的潜在应用,为自动驾驶技术的发展提供了理论基础和实践支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar.

With the rapid progress of intelligent vehicle technology, the accurate recognition of road surface types and conditions has emerged as a crucial technology for improving the safety and comfort levels in autonomous driving. This paper puts forward a multi-feature fusion approach for road surface identification. Relying on a 24 GHz millimeter-wave radar, statistical features are combined with wavelet transform techniques. This combination enables the efficient classification of diverse road surface types and conditions. Firstly, the discriminability of radar echo signals corresponding to different road surface types is verified via statistical analysis. During this process, six-dimensional statistical features that display remarkable differences are extracted. Subsequently, a novel radar data reconstruction approach is presented. This method involves fitting discrete echo signals into coordinate curves. Then, discrete wavelet transform is utilized to extract both low-frequency and high-frequency features, thereby strengthening the spatio-temporal correlation of the signals. The low-frequency information serves to capture general characteristics, whereas the high-frequency information reflects detailed features. The statistical features and wavelet transform features are fused at the feature level, culminating in the formation of a 56-dimensional feature vector. Four machine learning models, namely the Wide Neural Network (WNN), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Kernel methods, are employed as classifiers for both training and testing purposes. Experiments were executed with 8865 samples obtained from a real-vehicle platform. These samples comprehensively represented 12 typical road surface types and conditions. The experimental outcomes clearly indicate that the proposed method is capable of attaining a road surface type identification accuracy as high as 94.2%. As a result, it furnishes an efficient and cost-efficient road perception solution for intelligent driving systems. This research validates the potential application of millimeter-wave radar in intricate road environments and offers both theoretical underpinning and practical support for the advancement of autonomous driving technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信