基于RSS测量的源定位改进差分进化。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-06-17 DOI:10.3390/s25123787
Yunjie Tao, Lincan Li, Shengming Chang
{"title":"基于RSS测量的源定位改进差分进化。","authors":"Yunjie Tao, Lincan Li, Shengming Chang","doi":"10.3390/s25123787","DOIUrl":null,"url":null,"abstract":"<p><p>In wireless sensor networks, evolutionary algorithms have emerged as pivotal tools for addressing complex localization challenges inherent in non-convex and nonlinear maximum likelihood estimation problems associated with received signal strength (RSS) measurements. While differential evolution (DE) has demonstrated notable efficacy in optimizing multimodal cost functions, conventional implementations often grapple with suboptimal convergence rates and susceptibility to local optima. To overcome these limitations, this paper proposes a novel enhancement of DE by integrating opposition-based learning (OBL) principles. The proposed method introduces an adaptive scaling factor that dynamically balances global exploration and local exploitation during the evolutionary process, coupled with a penalty-augmented cost function to effectively utilize boundary information while eliminating explicit constraint handling. Comparative evaluations against state-of-the-art techniques-including semidefinite programming, linear least squares, and simulated annealing-reveal significant improvements in both convergence speed and positioning precision. Experimental results under diverse noise conditions and network configurations further validate the robustness and superiority of the proposed approach, particularly in scenarios characterized by high environmental uncertainty or sparse anchor node deployments.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Differential Evolution for Source Localization Using RSS Measurements.\",\"authors\":\"Yunjie Tao, Lincan Li, Shengming Chang\",\"doi\":\"10.3390/s25123787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In wireless sensor networks, evolutionary algorithms have emerged as pivotal tools for addressing complex localization challenges inherent in non-convex and nonlinear maximum likelihood estimation problems associated with received signal strength (RSS) measurements. While differential evolution (DE) has demonstrated notable efficacy in optimizing multimodal cost functions, conventional implementations often grapple with suboptimal convergence rates and susceptibility to local optima. To overcome these limitations, this paper proposes a novel enhancement of DE by integrating opposition-based learning (OBL) principles. The proposed method introduces an adaptive scaling factor that dynamically balances global exploration and local exploitation during the evolutionary process, coupled with a penalty-augmented cost function to effectively utilize boundary information while eliminating explicit constraint handling. Comparative evaluations against state-of-the-art techniques-including semidefinite programming, linear least squares, and simulated annealing-reveal significant improvements in both convergence speed and positioning precision. Experimental results under diverse noise conditions and network configurations further validate the robustness and superiority of the proposed approach, particularly in scenarios characterized by high environmental uncertainty or sparse anchor node deployments.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25123787\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123787","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在无线传感器网络中,进化算法已经成为解决与接收信号强度(RSS)测量相关的非凸和非线性最大似然估计问题中固有的复杂定位挑战的关键工具。虽然差分进化(DE)在优化多模态成本函数方面已经证明了显著的有效性,但传统的实现经常与次优收敛率和局部最优易感性作斗争。为了克服这些限制,本文提出了一种新的基于对立学习(OBL)原理的DE增强方法。该方法引入自适应比例因子,在进化过程中动态平衡全局探索和局部开发,并结合惩罚增强成本函数有效利用边界信息,同时消除显式约束处理。与最先进的技术(包括半定规划、线性最小二乘和模拟退火)的比较评估显示,收敛速度和定位精度都有显著提高。在不同噪声条件和网络配置下的实验结果进一步验证了该方法的鲁棒性和优越性,特别是在环境不确定性高或锚节点部署稀疏的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Differential Evolution for Source Localization Using RSS Measurements.

In wireless sensor networks, evolutionary algorithms have emerged as pivotal tools for addressing complex localization challenges inherent in non-convex and nonlinear maximum likelihood estimation problems associated with received signal strength (RSS) measurements. While differential evolution (DE) has demonstrated notable efficacy in optimizing multimodal cost functions, conventional implementations often grapple with suboptimal convergence rates and susceptibility to local optima. To overcome these limitations, this paper proposes a novel enhancement of DE by integrating opposition-based learning (OBL) principles. The proposed method introduces an adaptive scaling factor that dynamically balances global exploration and local exploitation during the evolutionary process, coupled with a penalty-augmented cost function to effectively utilize boundary information while eliminating explicit constraint handling. Comparative evaluations against state-of-the-art techniques-including semidefinite programming, linear least squares, and simulated annealing-reveal significant improvements in both convergence speed and positioning precision. Experimental results under diverse noise conditions and network configurations further validate the robustness and superiority of the proposed approach, particularly in scenarios characterized by high environmental uncertainty or sparse anchor node deployments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信