负载来氟米特的局部微海绵凝胶的设计和开发:来自体外和体内炎症研究的见解。

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Nirmal Shah, Priyank Patel, Dipti Gohil, Rajesh Maheshwari, Chitrali Talele, Dipali Talele, Dhaivat Parikh, Jay Patwa
{"title":"负载来氟米特的局部微海绵凝胶的设计和开发:来自体外和体内炎症研究的见解。","authors":"Nirmal Shah, Priyank Patel, Dipti Gohil, Rajesh Maheshwari, Chitrali Talele, Dipali Talele, Dhaivat Parikh, Jay Patwa","doi":"10.1080/10837450.2025.2525256","DOIUrl":null,"url":null,"abstract":"<p><p>Leflunomide, a frequently used medicament, falls under the category of disease modifying anti-rheumatoid drugs. The tablets are the only product available in the market which may lead to liver toxicity upon long-term use. Being a class II drug, there is a need of some novel formulation for minimizing systemic toxicity of drug without compromising its therapeutic potential. Microsponges possess unique characteristics that makes it a versatile drug delivery carrier. Leflunomide loaded Microsponges were prepared with matrix forming polymer (ethyl cellulose) and stabilizer (poly vinyl alcohol) using quasi-emulsion solvent diffusion method. Two independent parameters, namely concentrations of polymer and stabilizing agent, were examined using a full 3<sup>2</sup> factorial design to determine their impact on particle size and % entrapment efficiency. The optimized formulation showed promising result for particle size (48.96 µm) and entrapment efficiency (89.45%) with spherical and tiny pores on surface. The optimized gel exhibited sustained release up to 8 h (91.46 ± 3.84%) with satisfactory results of flux and permeability coefficient. The developed formulation has good anti-inflammatory properties in wistar rats and a histopathology investigation on rats' skin verified its skin compatibility. The stability study showed stable formulation up to the period of 3 months. These findings demonstrated the potential of microsponges to improve the therapeutic potential of poorly soluble leflunomide.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-12"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and development of leflunomide loaded topical microsponge gel: insights from <i>ex vivo</i> and <i>in vivo</i> inflammatory studies.\",\"authors\":\"Nirmal Shah, Priyank Patel, Dipti Gohil, Rajesh Maheshwari, Chitrali Talele, Dipali Talele, Dhaivat Parikh, Jay Patwa\",\"doi\":\"10.1080/10837450.2025.2525256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leflunomide, a frequently used medicament, falls under the category of disease modifying anti-rheumatoid drugs. The tablets are the only product available in the market which may lead to liver toxicity upon long-term use. Being a class II drug, there is a need of some novel formulation for minimizing systemic toxicity of drug without compromising its therapeutic potential. Microsponges possess unique characteristics that makes it a versatile drug delivery carrier. Leflunomide loaded Microsponges were prepared with matrix forming polymer (ethyl cellulose) and stabilizer (poly vinyl alcohol) using quasi-emulsion solvent diffusion method. Two independent parameters, namely concentrations of polymer and stabilizing agent, were examined using a full 3<sup>2</sup> factorial design to determine their impact on particle size and % entrapment efficiency. The optimized formulation showed promising result for particle size (48.96 µm) and entrapment efficiency (89.45%) with spherical and tiny pores on surface. The optimized gel exhibited sustained release up to 8 h (91.46 ± 3.84%) with satisfactory results of flux and permeability coefficient. The developed formulation has good anti-inflammatory properties in wistar rats and a histopathology investigation on rats' skin verified its skin compatibility. The stability study showed stable formulation up to the period of 3 months. These findings demonstrated the potential of microsponges to improve the therapeutic potential of poorly soluble leflunomide.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2025.2525256\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2525256","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

来氟米特是一种常用的药物,属于改善疾病的抗类风湿药物。这种片剂是市场上唯一一种长期使用可能导致肝毒性的产品。作为二类药物,需要一些新的配方来降低药物的全身毒性,同时又不影响其治疗潜力。微海绵具有独特的特性,使其成为多功能的药物输送载体。采用准乳液溶剂扩散法制备了来氟米特负载微海绵,以成基聚合物(乙基纤维素)和稳定剂(聚乙烯醇)为原料。两个独立的参数,即聚合物和稳定剂的浓度,使用完整的32因子设计来确定它们对粒径和捕集效率的影响。优化后的配方具有良好的粒径(48.96µm)和捕集效率(89.45%),且表面孔隙呈球形和微小。该凝胶的缓释时间为8 h(91.46±3.84%),其通量和渗透系数均较好。该制剂对wistar大鼠具有良好的抗炎作用,对大鼠皮肤的组织病理学研究证实了其皮肤相容性。稳定性研究表明,配方稳定至三个月。这些发现表明,微海绵有可能改善难溶性来氟米特的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and development of leflunomide loaded topical microsponge gel: insights from ex vivo and in vivo inflammatory studies.

Leflunomide, a frequently used medicament, falls under the category of disease modifying anti-rheumatoid drugs. The tablets are the only product available in the market which may lead to liver toxicity upon long-term use. Being a class II drug, there is a need of some novel formulation for minimizing systemic toxicity of drug without compromising its therapeutic potential. Microsponges possess unique characteristics that makes it a versatile drug delivery carrier. Leflunomide loaded Microsponges were prepared with matrix forming polymer (ethyl cellulose) and stabilizer (poly vinyl alcohol) using quasi-emulsion solvent diffusion method. Two independent parameters, namely concentrations of polymer and stabilizing agent, were examined using a full 32 factorial design to determine their impact on particle size and % entrapment efficiency. The optimized formulation showed promising result for particle size (48.96 µm) and entrapment efficiency (89.45%) with spherical and tiny pores on surface. The optimized gel exhibited sustained release up to 8 h (91.46 ± 3.84%) with satisfactory results of flux and permeability coefficient. The developed formulation has good anti-inflammatory properties in wistar rats and a histopathology investigation on rats' skin verified its skin compatibility. The stability study showed stable formulation up to the period of 3 months. These findings demonstrated the potential of microsponges to improve the therapeutic potential of poorly soluble leflunomide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信