Gordana Stanojević, Ivana Adamov, Snežana Mugoša, Veselinka Vukićević, Svetlana Ibrić
{"title":"选择性激光烧结阿托西汀片:一种小规模、个性化生产的创新方法。","authors":"Gordana Stanojević, Ivana Adamov, Snežana Mugoša, Veselinka Vukićević, Svetlana Ibrić","doi":"10.3390/pharmaceutics17060794","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing it with conventional direct compression. <b>Methods:</b> Atomoxetine tablets were produced using SLS 3D printing with varying laser scanning speeds and compared to tablets made via a compaction simulator. Formulations were based on hydroxypropyl methylcellulose (HPMC) as the primary matrix former. The physical properties, drug content, disintegration time, and dissolution profiles were evaluated. The structural and chemical integrity were assessed using SEM, FTIR, DSC, and XRPD. <b>Results:</b> The SLS tablets exhibited comparable mechanical properties and drug content to those made by compaction. Lower laser speeds produced harder tablets with slower disintegration, while higher speeds yielded more porous tablets with ultra-rapid drug release (>85% in 15 min). All tablets met the European Pharmacopoeia dissolution criteria. No significant drug-excipient interactions or changes in crystallinity were detected. <b>Conclusions:</b> SLS printing is a viable alternative to traditional tablet manufacturing, offering control over drug release profiles through parameter adjustment. The technique supports the development of high-quality, patient-specific dosage forms and shows promise for broader implementation in personalized pharmaceutical therapy.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 6","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197195/pdf/","citationCount":"0","resultStr":"{\"title\":\"Selective Laser Sintering of Atomoxetine Tablets: An Innovative Approach for Small-Scale, Personalized Production.\",\"authors\":\"Gordana Stanojević, Ivana Adamov, Snežana Mugoša, Veselinka Vukićević, Svetlana Ibrić\",\"doi\":\"10.3390/pharmaceutics17060794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing it with conventional direct compression. <b>Methods:</b> Atomoxetine tablets were produced using SLS 3D printing with varying laser scanning speeds and compared to tablets made via a compaction simulator. Formulations were based on hydroxypropyl methylcellulose (HPMC) as the primary matrix former. The physical properties, drug content, disintegration time, and dissolution profiles were evaluated. The structural and chemical integrity were assessed using SEM, FTIR, DSC, and XRPD. <b>Results:</b> The SLS tablets exhibited comparable mechanical properties and drug content to those made by compaction. Lower laser speeds produced harder tablets with slower disintegration, while higher speeds yielded more porous tablets with ultra-rapid drug release (>85% in 15 min). All tablets met the European Pharmacopoeia dissolution criteria. No significant drug-excipient interactions or changes in crystallinity were detected. <b>Conclusions:</b> SLS printing is a viable alternative to traditional tablet manufacturing, offering control over drug release profiles through parameter adjustment. The technique supports the development of high-quality, patient-specific dosage forms and shows promise for broader implementation in personalized pharmaceutical therapy.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197195/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17060794\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17060794","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Selective Laser Sintering of Atomoxetine Tablets: An Innovative Approach for Small-Scale, Personalized Production.
Background/Objectives: The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing it with conventional direct compression. Methods: Atomoxetine tablets were produced using SLS 3D printing with varying laser scanning speeds and compared to tablets made via a compaction simulator. Formulations were based on hydroxypropyl methylcellulose (HPMC) as the primary matrix former. The physical properties, drug content, disintegration time, and dissolution profiles were evaluated. The structural and chemical integrity were assessed using SEM, FTIR, DSC, and XRPD. Results: The SLS tablets exhibited comparable mechanical properties and drug content to those made by compaction. Lower laser speeds produced harder tablets with slower disintegration, while higher speeds yielded more porous tablets with ultra-rapid drug release (>85% in 15 min). All tablets met the European Pharmacopoeia dissolution criteria. No significant drug-excipient interactions or changes in crystallinity were detected. Conclusions: SLS printing is a viable alternative to traditional tablet manufacturing, offering control over drug release profiles through parameter adjustment. The technique supports the development of high-quality, patient-specific dosage forms and shows promise for broader implementation in personalized pharmaceutical therapy.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.