Sen Duan, Qindong Zhang, Jinqiang Zhu, Jiaming Wang
{"title":"SS-31靶向NOS2通过恢复线粒体功能促进衰老骨髓间充质干细胞成骨分化。","authors":"Sen Duan, Qindong Zhang, Jinqiang Zhu, Jiaming Wang","doi":"10.1080/15476278.2025.2519649","DOIUrl":null,"url":null,"abstract":"<p><p>This study delves into the rejuvenating effects of SS-31 on aged human Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs), focusing on its potential to restore their diminished osteogenic differentiation capacity, a critical issue in geriatric medicine and bone tissue engineering. SS-31 significantly improved mitochondrial function, increasing ATP production by 35% and reducing ROS levels by 40% in aged BM-MSCs. Osteogenic differentiation was enhanced, as evidenced by a 2.8-fold increase in ALP activity and a 3.5-fold increase in Alizarin Red S staining intensity. Additionally, SS-31 reduced NOS2 expression by 50%, highlighting its therapeutic potential in age-related bone loss. SS-31 intervention not only normalizes mitochondrial structure and function, reducing ROS levels and enhancing oxygen consumption rates, but also targets the NOS2 gene, a potential drug target, which upon knockdown, leads to a substantial upregulation of osteogenic markers and an improvement in mitochondrial function. In conclusion, the findings of this study highlight the therapeutic potential of SS-31 in reversing the age-related decline in BM-MSC function by specifically inhibiting NOS2 expression and restoring mitochondrial function. This research provides a scientific basis for the development of new treatments for osteoporosis and other age-related bone diseases, emphasizing the importance of targeting mitochondrial function and cellular senescence in regenerative therapies.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"21 1","pages":"2519649"},"PeriodicalIF":1.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258809/pdf/","citationCount":"0","resultStr":"{\"title\":\"SS-31 Targets NOS2 to Enhance Osteogenic Differentiation in Aged BMSCs by Restoring Mitochondrial Function.\",\"authors\":\"Sen Duan, Qindong Zhang, Jinqiang Zhu, Jiaming Wang\",\"doi\":\"10.1080/15476278.2025.2519649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study delves into the rejuvenating effects of SS-31 on aged human Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs), focusing on its potential to restore their diminished osteogenic differentiation capacity, a critical issue in geriatric medicine and bone tissue engineering. SS-31 significantly improved mitochondrial function, increasing ATP production by 35% and reducing ROS levels by 40% in aged BM-MSCs. Osteogenic differentiation was enhanced, as evidenced by a 2.8-fold increase in ALP activity and a 3.5-fold increase in Alizarin Red S staining intensity. Additionally, SS-31 reduced NOS2 expression by 50%, highlighting its therapeutic potential in age-related bone loss. SS-31 intervention not only normalizes mitochondrial structure and function, reducing ROS levels and enhancing oxygen consumption rates, but also targets the NOS2 gene, a potential drug target, which upon knockdown, leads to a substantial upregulation of osteogenic markers and an improvement in mitochondrial function. In conclusion, the findings of this study highlight the therapeutic potential of SS-31 in reversing the age-related decline in BM-MSC function by specifically inhibiting NOS2 expression and restoring mitochondrial function. This research provides a scientific basis for the development of new treatments for osteoporosis and other age-related bone diseases, emphasizing the importance of targeting mitochondrial function and cellular senescence in regenerative therapies.</p>\",\"PeriodicalId\":19596,\"journal\":{\"name\":\"Organogenesis\",\"volume\":\"21 1\",\"pages\":\"2519649\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258809/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organogenesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15476278.2025.2519649\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2025.2519649","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SS-31 Targets NOS2 to Enhance Osteogenic Differentiation in Aged BMSCs by Restoring Mitochondrial Function.
This study delves into the rejuvenating effects of SS-31 on aged human Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs), focusing on its potential to restore their diminished osteogenic differentiation capacity, a critical issue in geriatric medicine and bone tissue engineering. SS-31 significantly improved mitochondrial function, increasing ATP production by 35% and reducing ROS levels by 40% in aged BM-MSCs. Osteogenic differentiation was enhanced, as evidenced by a 2.8-fold increase in ALP activity and a 3.5-fold increase in Alizarin Red S staining intensity. Additionally, SS-31 reduced NOS2 expression by 50%, highlighting its therapeutic potential in age-related bone loss. SS-31 intervention not only normalizes mitochondrial structure and function, reducing ROS levels and enhancing oxygen consumption rates, but also targets the NOS2 gene, a potential drug target, which upon knockdown, leads to a substantial upregulation of osteogenic markers and an improvement in mitochondrial function. In conclusion, the findings of this study highlight the therapeutic potential of SS-31 in reversing the age-related decline in BM-MSC function by specifically inhibiting NOS2 expression and restoring mitochondrial function. This research provides a scientific basis for the development of new treatments for osteoporosis and other age-related bone diseases, emphasizing the importance of targeting mitochondrial function and cellular senescence in regenerative therapies.
期刊介绍:
Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes.
The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering.
The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.