微技术中的工艺开发方法及相关工艺环境。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-05-22 DOI:10.3390/mi16060606
Korbinian T Metz, Faruk Civelek, André Zimmermann
{"title":"微技术中的工艺开发方法及相关工艺环境。","authors":"Korbinian T Metz, Faruk Civelek, André Zimmermann","doi":"10.3390/mi16060606","DOIUrl":null,"url":null,"abstract":"<p><p>Microsystem technology (MST) and micro-electro-mechanical systems (MEMS) are key technologies that continually introduce new application opportunities. Increasing complexity and individualization require systematic process development to avoid errors and delays. While existing methods for process development address various aspects of the manufacturing process, the systematic consideration of external factors influencing the process environment (PEnv) remains broadly inadequate. Despite extensive standards, PEnv-related influences lead to quality fluctuations in practice. A list of influencing factors and an example process illustrate these challenges. This study aims to analyze which methods exist for process development in MST and to what extent they systematically consider process environmental factors. A mixed methods design was used for the analysis. In a systematic literature review (SLR) using traditional databases and Artificial intelligence-supported search tools, a total of 75 relevant studies from the years 2005 to 2024 were identified. The methods that cover various aspects of process development are presented in an overview. An adapted GRADE (Grading of Recommendations Assessment, Development, and Evaluation) analysis was used to check the extent to which the PEnv can be included in process development using the methods currently available. The results show that existing approaches often take PEnv into account insufficiently. Efficient consideration with the use of current methods requires extensive expert knowledge, knowledge management, and project-specific supplementary methods. This study emphasizes the need for research into methods that systematically integrate environmental requirements into process development to improve the efficiency and quality of MST manufacturing in this area.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194810/pdf/","citationCount":"0","resultStr":"{\"title\":\"Process Development Methods in Microtechnology and the Associated Process Environment.\",\"authors\":\"Korbinian T Metz, Faruk Civelek, André Zimmermann\",\"doi\":\"10.3390/mi16060606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microsystem technology (MST) and micro-electro-mechanical systems (MEMS) are key technologies that continually introduce new application opportunities. Increasing complexity and individualization require systematic process development to avoid errors and delays. While existing methods for process development address various aspects of the manufacturing process, the systematic consideration of external factors influencing the process environment (PEnv) remains broadly inadequate. Despite extensive standards, PEnv-related influences lead to quality fluctuations in practice. A list of influencing factors and an example process illustrate these challenges. This study aims to analyze which methods exist for process development in MST and to what extent they systematically consider process environmental factors. A mixed methods design was used for the analysis. In a systematic literature review (SLR) using traditional databases and Artificial intelligence-supported search tools, a total of 75 relevant studies from the years 2005 to 2024 were identified. The methods that cover various aspects of process development are presented in an overview. An adapted GRADE (Grading of Recommendations Assessment, Development, and Evaluation) analysis was used to check the extent to which the PEnv can be included in process development using the methods currently available. The results show that existing approaches often take PEnv into account insufficiently. Efficient consideration with the use of current methods requires extensive expert knowledge, knowledge management, and project-specific supplementary methods. This study emphasizes the need for research into methods that systematically integrate environmental requirements into process development to improve the efficiency and quality of MST manufacturing in this area.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194810/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16060606\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060606","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

微系统技术(MST)和微机电系统(MEMS)是不断引入新的应用机会的关键技术。增加的复杂性和个性化需要系统的流程开发,以避免错误和延迟。虽然现有的工艺开发方法涉及制造过程的各个方面,但系统地考虑影响工艺环境(PEnv)的外部因素仍然普遍不足。尽管有广泛的标准,但penv相关的影响导致实践中的质量波动。一个影响因素列表和一个示例过程说明了这些挑战。本研究旨在分析在MST中存在哪些工艺开发方法,以及它们在多大程度上系统地考虑了工艺环境因素。采用混合方法设计进行分析。利用传统数据库和人工智能支持的搜索工具进行系统文献综述(SLR),从2005年到2024年共识别了75项相关研究。在概述中介绍了涵盖流程开发各个方面的方法。一个改编的GRADE(建议评估、开发和评价的分级)分析被用来检查PEnv可以在多大程度上使用当前可用的方法被包括在过程开发中。结果表明,现有的方法往往没有充分考虑PEnv。有效地考虑当前方法的使用需要广泛的专家知识、知识管理和特定于项目的补充方法。本研究强调有必要研究将环境要求系统地整合到工艺开发中的方法,以提高该领域MST制造的效率和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process Development Methods in Microtechnology and the Associated Process Environment.

Microsystem technology (MST) and micro-electro-mechanical systems (MEMS) are key technologies that continually introduce new application opportunities. Increasing complexity and individualization require systematic process development to avoid errors and delays. While existing methods for process development address various aspects of the manufacturing process, the systematic consideration of external factors influencing the process environment (PEnv) remains broadly inadequate. Despite extensive standards, PEnv-related influences lead to quality fluctuations in practice. A list of influencing factors and an example process illustrate these challenges. This study aims to analyze which methods exist for process development in MST and to what extent they systematically consider process environmental factors. A mixed methods design was used for the analysis. In a systematic literature review (SLR) using traditional databases and Artificial intelligence-supported search tools, a total of 75 relevant studies from the years 2005 to 2024 were identified. The methods that cover various aspects of process development are presented in an overview. An adapted GRADE (Grading of Recommendations Assessment, Development, and Evaluation) analysis was used to check the extent to which the PEnv can be included in process development using the methods currently available. The results show that existing approaches often take PEnv into account insufficiently. Efficient consideration with the use of current methods requires extensive expert knowledge, knowledge management, and project-specific supplementary methods. This study emphasizes the need for research into methods that systematically integrate environmental requirements into process development to improve the efficiency and quality of MST manufacturing in this area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信