探索经济制造ZnO器件对安全认证物理不可克隆功能的内在变异性。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-05-26 DOI:10.3390/mi16060627
Savvas Ermeidis, Dimitrios Tassis, George P Papageorgiou, Stavros G Stavrinides, Eleni Makarona
{"title":"探索经济制造ZnO器件对安全认证物理不可克隆功能的内在变异性。","authors":"Savvas Ermeidis, Dimitrios Tassis, George P Papageorgiou, Stavros G Stavrinides, Eleni Makarona","doi":"10.3390/mi16060627","DOIUrl":null,"url":null,"abstract":"<p><p>Meeting the rising need for secure authentication in IoT and Industry 4.0, this work presents chemically synthesized ZnO nanostructured homojunctions as powerful and scalable physical unclonable functions (PUFs). By leveraging intrinsic variability from Li doping and the stochastic hydrothermal growth process, we systematically identified electrical parameters offering outstanding variability, stability, and reproducibility. ZnO devices outperform commercial diodes by delivering richer parameter diversity, lower costs, and superior environmental sustainability. Pushing beyond traditional approaches, we introduce multi-level quantization for boosted accuracy and entropy, demonstrate the normal distribution of challenge candidate parameters to support a novel method under development, and extract multiple parameters (8-10) per device instead of relying on a single-bit output. Parameter optimization and selection are performed upfront through a rigorous assessment of variability and inter-correlation, maximizing uniqueness and reliability. Thanks to their strong scalability and eco-friendliness, ZnO-based homojunctions emerge as a dynamic, future-proof platform for building low-cost, high-security, and sustainable digital identity systems.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195217/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the Inherent Variability of Economically Fabricated ZnO Devices Towards Physical Unclonable Functions for Secure Authentication.\",\"authors\":\"Savvas Ermeidis, Dimitrios Tassis, George P Papageorgiou, Stavros G Stavrinides, Eleni Makarona\",\"doi\":\"10.3390/mi16060627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Meeting the rising need for secure authentication in IoT and Industry 4.0, this work presents chemically synthesized ZnO nanostructured homojunctions as powerful and scalable physical unclonable functions (PUFs). By leveraging intrinsic variability from Li doping and the stochastic hydrothermal growth process, we systematically identified electrical parameters offering outstanding variability, stability, and reproducibility. ZnO devices outperform commercial diodes by delivering richer parameter diversity, lower costs, and superior environmental sustainability. Pushing beyond traditional approaches, we introduce multi-level quantization for boosted accuracy and entropy, demonstrate the normal distribution of challenge candidate parameters to support a novel method under development, and extract multiple parameters (8-10) per device instead of relying on a single-bit output. Parameter optimization and selection are performed upfront through a rigorous assessment of variability and inter-correlation, maximizing uniqueness and reliability. Thanks to their strong scalability and eco-friendliness, ZnO-based homojunctions emerge as a dynamic, future-proof platform for building low-cost, high-security, and sustainable digital identity systems.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195217/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16060627\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060627","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了满足物联网和工业4.0对安全认证日益增长的需求,本研究提出了化学合成的ZnO纳米结构同质结作为强大且可扩展的物理不可克隆功能(puf)。通过利用锂掺杂和随机水热生长过程的内在可变性,我们系统地确定了具有出色可变性、稳定性和可重复性的电参数。ZnO器件通过提供更丰富的参数多样性、更低的成本和更好的环境可持续性来优于商用二极管。在传统方法的基础上,我们引入了多级量化来提高精度和熵,展示了挑战候选参数的正态分布,以支持正在开发的新方法,并提取每个设备的多个参数(8-10),而不是依赖于单比特输出。参数优化和选择是通过严格的可变性和相互关系评估进行的,最大限度地提高了独特性和可靠性。由于其强大的可扩展性和生态友好性,基于zno的同质结成为一个动态的、面向未来的平台,用于构建低成本、高安全性和可持续的数字身份系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Inherent Variability of Economically Fabricated ZnO Devices Towards Physical Unclonable Functions for Secure Authentication.

Meeting the rising need for secure authentication in IoT and Industry 4.0, this work presents chemically synthesized ZnO nanostructured homojunctions as powerful and scalable physical unclonable functions (PUFs). By leveraging intrinsic variability from Li doping and the stochastic hydrothermal growth process, we systematically identified electrical parameters offering outstanding variability, stability, and reproducibility. ZnO devices outperform commercial diodes by delivering richer parameter diversity, lower costs, and superior environmental sustainability. Pushing beyond traditional approaches, we introduce multi-level quantization for boosted accuracy and entropy, demonstrate the normal distribution of challenge candidate parameters to support a novel method under development, and extract multiple parameters (8-10) per device instead of relying on a single-bit output. Parameter optimization and selection are performed upfront through a rigorous assessment of variability and inter-correlation, maximizing uniqueness and reliability. Thanks to their strong scalability and eco-friendliness, ZnO-based homojunctions emerge as a dynamic, future-proof platform for building low-cost, high-security, and sustainable digital identity systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信