基于快速模式反转的MEMS陀螺仪模式自动匹配方法。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-06-12 DOI:10.3390/mi16060704
Feng Bu, Bo Fan, Rui Feng, Ming Zhou, Yiwang Wang
{"title":"基于快速模式反转的MEMS陀螺仪模式自动匹配方法。","authors":"Feng Bu, Bo Fan, Rui Feng, Ming Zhou, Yiwang Wang","doi":"10.3390/mi16060704","DOIUrl":null,"url":null,"abstract":"<p><p>Processing errors can result in an asymmetric stiffness distribution within a microelectromechanical system (MEMS) disk resonator gyroscope (DRG) and thereby cause a mode mismatch and reduce the mechanical sensitivity and closed-loop scale factor stability. This paper proposes an automatic mode-matching method that utilizes mode reversal to obtain the true resonant frequency of the operating state of a gyroscope for high-precision matching. This method constructs a gyroscope control system that contains a drive closed loop, sense force-to-rebalance (FTR) closed loop, and quadrature error correction closed loop. After the gyroscope was powered on and started up, the x- and y-axes were quickly switched to obtain the resonant frequencies of the two axes through a phase-locked loop (PLL), and the x-axis tuning voltage was automatically adjusted to match the two-axis frequency. The experimental results show that the method takes only 5 s to execute, the frequency matching accuracy reaches 0.01 Hz, the matching state can be maintained in the temperature range of -20 to 60 °C, and the fluctuation of the frequency split does not exceed 0.005 Hz.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194808/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic Mode-Matching Method for MEMS Gyroscope Based on Fast Mode Reversal.\",\"authors\":\"Feng Bu, Bo Fan, Rui Feng, Ming Zhou, Yiwang Wang\",\"doi\":\"10.3390/mi16060704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Processing errors can result in an asymmetric stiffness distribution within a microelectromechanical system (MEMS) disk resonator gyroscope (DRG) and thereby cause a mode mismatch and reduce the mechanical sensitivity and closed-loop scale factor stability. This paper proposes an automatic mode-matching method that utilizes mode reversal to obtain the true resonant frequency of the operating state of a gyroscope for high-precision matching. This method constructs a gyroscope control system that contains a drive closed loop, sense force-to-rebalance (FTR) closed loop, and quadrature error correction closed loop. After the gyroscope was powered on and started up, the x- and y-axes were quickly switched to obtain the resonant frequencies of the two axes through a phase-locked loop (PLL), and the x-axis tuning voltage was automatically adjusted to match the two-axis frequency. The experimental results show that the method takes only 5 s to execute, the frequency matching accuracy reaches 0.01 Hz, the matching state can be maintained in the temperature range of -20 to 60 °C, and the fluctuation of the frequency split does not exceed 0.005 Hz.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194808/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16060704\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060704","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

加工误差会导致微机电系统(MEMS)盘式谐振陀螺仪(DRG)内部的刚度分布不对称,从而导致模态失配,降低机械灵敏度和闭环比例因子稳定性。本文提出了一种利用模式反转获得陀螺仪工作状态真实谐振频率进行高精度匹配的自动模式匹配方法。该方法构建了包含驱动闭环、传感力-再平衡(FTR)闭环和正交误差校正闭环的陀螺仪控制系统。陀螺仪上电启动后,通过锁相环(PLL)快速切换x轴和y轴,获得两轴的谐振频率,并自动调整x轴调谐电压以匹配两轴频率。实验结果表明,该方法执行时间仅为5 s,频率匹配精度达到0.01 Hz,在-20 ~ 60℃温度范围内可保持匹配状态,频率分裂波动不超过0.005 Hz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Mode-Matching Method for MEMS Gyroscope Based on Fast Mode Reversal.

Processing errors can result in an asymmetric stiffness distribution within a microelectromechanical system (MEMS) disk resonator gyroscope (DRG) and thereby cause a mode mismatch and reduce the mechanical sensitivity and closed-loop scale factor stability. This paper proposes an automatic mode-matching method that utilizes mode reversal to obtain the true resonant frequency of the operating state of a gyroscope for high-precision matching. This method constructs a gyroscope control system that contains a drive closed loop, sense force-to-rebalance (FTR) closed loop, and quadrature error correction closed loop. After the gyroscope was powered on and started up, the x- and y-axes were quickly switched to obtain the resonant frequencies of the two axes through a phase-locked loop (PLL), and the x-axis tuning voltage was automatically adjusted to match the two-axis frequency. The experimental results show that the method takes only 5 s to execute, the frequency matching accuracy reaches 0.01 Hz, the matching state can be maintained in the temperature range of -20 to 60 °C, and the fluctuation of the frequency split does not exceed 0.005 Hz.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信