Haitao Zhang, Bo Feng, Suoluosu Yang, Ruolin Ruan, Rong Zhang, Tongqiang Xiong, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong, Yanhua Fan, Xiaoqiong Zuo
{"title":"基于bicuse的热电材料研究进展。","authors":"Haitao Zhang, Bo Feng, Suoluosu Yang, Ruolin Ruan, Rong Zhang, Tongqiang Xiong, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong, Yanhua Fan, Xiaoqiong Zuo","doi":"10.3390/mi16060703","DOIUrl":null,"url":null,"abstract":"<p><p>Since 2010, BiCuSeO has emerged as a captivating subject of investigation within the realm of thermoelectric materials. Its allure lies in a remarkable confluence of characteristics: a distinctive natural super-lattice structure, an elevated Seebeck coefficient, and a low thermal conductivity, all of which have collectively piqued the intense interest of scientists worldwide. Over the subsequent eight-year period, an extensive array of research endeavors has been meticulously carried out, delving deep into the multifaceted properties of BiCuSeO and exploring avenues for performance enhancement. In this comprehensive review, we embark on a detailed exploration of the fundamental properties of BiCuSeO, encompassing its preparation methodologies, as well as its thermoelectric and mechanical attributes. A thorough synthesis of diverse strategies for optimizing the composition and structure of BiCuSeO is presented, elucidating how these modifications contribute to the enhancement of its thermoelectric and mechanical performance. Finally, the current state of research on N-type BiCuSeO is systematically summarized, offering a panoramic view of the advancements and challenges in this particular area.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195016/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Updated Review of BiCuSeO-Based Thermoelectric Materials.\",\"authors\":\"Haitao Zhang, Bo Feng, Suoluosu Yang, Ruolin Ruan, Rong Zhang, Tongqiang Xiong, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong, Yanhua Fan, Xiaoqiong Zuo\",\"doi\":\"10.3390/mi16060703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since 2010, BiCuSeO has emerged as a captivating subject of investigation within the realm of thermoelectric materials. Its allure lies in a remarkable confluence of characteristics: a distinctive natural super-lattice structure, an elevated Seebeck coefficient, and a low thermal conductivity, all of which have collectively piqued the intense interest of scientists worldwide. Over the subsequent eight-year period, an extensive array of research endeavors has been meticulously carried out, delving deep into the multifaceted properties of BiCuSeO and exploring avenues for performance enhancement. In this comprehensive review, we embark on a detailed exploration of the fundamental properties of BiCuSeO, encompassing its preparation methodologies, as well as its thermoelectric and mechanical attributes. A thorough synthesis of diverse strategies for optimizing the composition and structure of BiCuSeO is presented, elucidating how these modifications contribute to the enhancement of its thermoelectric and mechanical performance. Finally, the current state of research on N-type BiCuSeO is systematically summarized, offering a panoramic view of the advancements and challenges in this particular area.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195016/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16060703\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060703","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An Updated Review of BiCuSeO-Based Thermoelectric Materials.
Since 2010, BiCuSeO has emerged as a captivating subject of investigation within the realm of thermoelectric materials. Its allure lies in a remarkable confluence of characteristics: a distinctive natural super-lattice structure, an elevated Seebeck coefficient, and a low thermal conductivity, all of which have collectively piqued the intense interest of scientists worldwide. Over the subsequent eight-year period, an extensive array of research endeavors has been meticulously carried out, delving deep into the multifaceted properties of BiCuSeO and exploring avenues for performance enhancement. In this comprehensive review, we embark on a detailed exploration of the fundamental properties of BiCuSeO, encompassing its preparation methodologies, as well as its thermoelectric and mechanical attributes. A thorough synthesis of diverse strategies for optimizing the composition and structure of BiCuSeO is presented, elucidating how these modifications contribute to the enhancement of its thermoelectric and mechanical performance. Finally, the current state of research on N-type BiCuSeO is systematically summarized, offering a panoramic view of the advancements and challenges in this particular area.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.