基于bicuse的热电材料研究进展。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-06-12 DOI:10.3390/mi16060703
Haitao Zhang, Bo Feng, Suoluosu Yang, Ruolin Ruan, Rong Zhang, Tongqiang Xiong, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong, Yanhua Fan, Xiaoqiong Zuo
{"title":"基于bicuse的热电材料研究进展。","authors":"Haitao Zhang, Bo Feng, Suoluosu Yang, Ruolin Ruan, Rong Zhang, Tongqiang Xiong, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong, Yanhua Fan, Xiaoqiong Zuo","doi":"10.3390/mi16060703","DOIUrl":null,"url":null,"abstract":"<p><p>Since 2010, BiCuSeO has emerged as a captivating subject of investigation within the realm of thermoelectric materials. Its allure lies in a remarkable confluence of characteristics: a distinctive natural super-lattice structure, an elevated Seebeck coefficient, and a low thermal conductivity, all of which have collectively piqued the intense interest of scientists worldwide. Over the subsequent eight-year period, an extensive array of research endeavors has been meticulously carried out, delving deep into the multifaceted properties of BiCuSeO and exploring avenues for performance enhancement. In this comprehensive review, we embark on a detailed exploration of the fundamental properties of BiCuSeO, encompassing its preparation methodologies, as well as its thermoelectric and mechanical attributes. A thorough synthesis of diverse strategies for optimizing the composition and structure of BiCuSeO is presented, elucidating how these modifications contribute to the enhancement of its thermoelectric and mechanical performance. Finally, the current state of research on N-type BiCuSeO is systematically summarized, offering a panoramic view of the advancements and challenges in this particular area.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195016/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Updated Review of BiCuSeO-Based Thermoelectric Materials.\",\"authors\":\"Haitao Zhang, Bo Feng, Suoluosu Yang, Ruolin Ruan, Rong Zhang, Tongqiang Xiong, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong, Yanhua Fan, Xiaoqiong Zuo\",\"doi\":\"10.3390/mi16060703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since 2010, BiCuSeO has emerged as a captivating subject of investigation within the realm of thermoelectric materials. Its allure lies in a remarkable confluence of characteristics: a distinctive natural super-lattice structure, an elevated Seebeck coefficient, and a low thermal conductivity, all of which have collectively piqued the intense interest of scientists worldwide. Over the subsequent eight-year period, an extensive array of research endeavors has been meticulously carried out, delving deep into the multifaceted properties of BiCuSeO and exploring avenues for performance enhancement. In this comprehensive review, we embark on a detailed exploration of the fundamental properties of BiCuSeO, encompassing its preparation methodologies, as well as its thermoelectric and mechanical attributes. A thorough synthesis of diverse strategies for optimizing the composition and structure of BiCuSeO is presented, elucidating how these modifications contribute to the enhancement of its thermoelectric and mechanical performance. Finally, the current state of research on N-type BiCuSeO is systematically summarized, offering a panoramic view of the advancements and challenges in this particular area.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195016/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16060703\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060703","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

自2010年以来,BiCuSeO已成为热电材料领域的一个迷人的研究课题。它的魅力在于其独特的特性:独特的天然超晶格结构、高塞贝克系数和低导热性,所有这些共同激起了全世界科学家的强烈兴趣。在接下来的8年里,我们进行了大量的研究工作,深入研究了BiCuSeO的多方面特性,并探索了提高性能的途径。在这篇全面的综述中,我们开始对BiCuSeO的基本性质进行了详细的探索,包括它的制备方法,以及它的热电和机械属性。全面综合了优化BiCuSeO的组成和结构的各种策略,阐明了这些修改如何有助于提高其热电和机械性能。最后,系统总结了n型BiCuSeO的研究现状,对该领域的研究进展和面临的挑战进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Updated Review of BiCuSeO-Based Thermoelectric Materials.

Since 2010, BiCuSeO has emerged as a captivating subject of investigation within the realm of thermoelectric materials. Its allure lies in a remarkable confluence of characteristics: a distinctive natural super-lattice structure, an elevated Seebeck coefficient, and a low thermal conductivity, all of which have collectively piqued the intense interest of scientists worldwide. Over the subsequent eight-year period, an extensive array of research endeavors has been meticulously carried out, delving deep into the multifaceted properties of BiCuSeO and exploring avenues for performance enhancement. In this comprehensive review, we embark on a detailed exploration of the fundamental properties of BiCuSeO, encompassing its preparation methodologies, as well as its thermoelectric and mechanical attributes. A thorough synthesis of diverse strategies for optimizing the composition and structure of BiCuSeO is presented, elucidating how these modifications contribute to the enhancement of its thermoelectric and mechanical performance. Finally, the current state of research on N-type BiCuSeO is systematically summarized, offering a panoramic view of the advancements and challenges in this particular area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信