键值存储的压缩感知闪存重映射。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-06-11 DOI:10.3390/mi16060699
Jialin Wang, Zhen Yang, Yi Fan, Yajuan Du
{"title":"键值存储的压缩感知闪存重映射。","authors":"Jialin Wang, Zhen Yang, Yi Fan, Yajuan Du","doi":"10.3390/mi16060699","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of big data and artificial intelligence, the demand for memory has exploded. As a key data structure in modern databases and distributed storage systems, the Log-Structured Merge Tree (LSM-tree) has been widely employed (such as LevelDB, RocksDB, etc.) in systems based on key-value pairs due to its efficient writing performance. In LSM-tree-based KV stores, typically deployed on systems with DRAM-SSD storage, the KV items are first organized into MemTable as buffer for SSTables in main memory. When the buffer size exceeds the threshold, MemTable is flushed to the SSD and reorganized into an SSTable, which is then passed down level by level through compaction. However, the compaction degrades write performance and SSD endurance due to significant write amplification. To address this issue, recent proposals have mostly focused on redesigning the structure of LSM trees. We discover the prevalence of unchanged data blocks (UDBs) in the LSM-tree compaction process, i.e., UDBs are written back to SSD the same as they are read into memory, which induces extra write amplification and degrades I/O performance. In this paper, we propose a KV store design in SSD, called RemapCom, to exploit remapping on these UDBs. RemapCom first identifies UDBs with a lightweight state machine integrated into the compaction merge process. In order to increase the ratio of UDBs, RemapCom further designs a UDB retention method to further develop the benefit of remapping. Moreover, we implement a prototype of RemapCom on LevelDB by providing two primitives for the remapping. Compared to the state of the art, the evaluation results demonstrate that RemapCom can reduce write amplification by up to 53% and improve write throughput by up to 30%.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195135/pdf/","citationCount":"0","resultStr":"{\"title\":\"Compaction-Aware Flash Memory Remapping for Key-Value Stores.\",\"authors\":\"Jialin Wang, Zhen Yang, Yi Fan, Yajuan Du\",\"doi\":\"10.3390/mi16060699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of big data and artificial intelligence, the demand for memory has exploded. As a key data structure in modern databases and distributed storage systems, the Log-Structured Merge Tree (LSM-tree) has been widely employed (such as LevelDB, RocksDB, etc.) in systems based on key-value pairs due to its efficient writing performance. In LSM-tree-based KV stores, typically deployed on systems with DRAM-SSD storage, the KV items are first organized into MemTable as buffer for SSTables in main memory. When the buffer size exceeds the threshold, MemTable is flushed to the SSD and reorganized into an SSTable, which is then passed down level by level through compaction. However, the compaction degrades write performance and SSD endurance due to significant write amplification. To address this issue, recent proposals have mostly focused on redesigning the structure of LSM trees. We discover the prevalence of unchanged data blocks (UDBs) in the LSM-tree compaction process, i.e., UDBs are written back to SSD the same as they are read into memory, which induces extra write amplification and degrades I/O performance. In this paper, we propose a KV store design in SSD, called RemapCom, to exploit remapping on these UDBs. RemapCom first identifies UDBs with a lightweight state machine integrated into the compaction merge process. In order to increase the ratio of UDBs, RemapCom further designs a UDB retention method to further develop the benefit of remapping. Moreover, we implement a prototype of RemapCom on LevelDB by providing two primitives for the remapping. Compared to the state of the art, the evaluation results demonstrate that RemapCom can reduce write amplification by up to 53% and improve write throughput by up to 30%.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195135/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16060699\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060699","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着大数据和人工智能的快速发展,对内存的需求呈爆炸式增长。日志结构合并树(Log-Structured Merge Tree, LSM-tree)作为现代数据库和分布式存储系统中的关键数据结构,由于其高效的写入性能,在基于键值对的系统中得到了广泛的应用(如LevelDB、RocksDB等)。在基于lsm树的KV存储中,通常部署在带有DRAM-SSD存储的系统上,KV项首先被组织到MemTable中,作为主存中sstable的缓冲区。当缓冲区大小超过阈值时,MemTable被刷新到SSD并重新组织成SSTable,然后通过压缩逐级向下传递。但是,由于显着的写放大,压缩会降低写性能和SSD耐用性。为了解决这个问题,最近的建议主要集中在重新设计LSM树的结构上。我们发现在lsm树压缩过程中普遍存在未改变的数据块(udb),也就是说,udb在被读入内存时被写回SSD,这会导致额外的写放大并降低I/O性能。在本文中,我们提出了一个在SSD中的KV存储设计,称为RemapCom,以利用这些udb上的重新映射。RemapCom首先用集成到压缩合并过程中的轻量级状态机标识udb。为了提高UDB的比例,RemapCom进一步设计了UDB保留方法,以进一步开发重新映射的好处。此外,我们通过为重新映射提供两个原语,在LevelDB上实现了RemapCom的原型。与现有技术相比,评估结果表明,RemapCom可以将写入放大减少53%,并将写入吞吐量提高30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compaction-Aware Flash Memory Remapping for Key-Value Stores.

With the rapid development of big data and artificial intelligence, the demand for memory has exploded. As a key data structure in modern databases and distributed storage systems, the Log-Structured Merge Tree (LSM-tree) has been widely employed (such as LevelDB, RocksDB, etc.) in systems based on key-value pairs due to its efficient writing performance. In LSM-tree-based KV stores, typically deployed on systems with DRAM-SSD storage, the KV items are first organized into MemTable as buffer for SSTables in main memory. When the buffer size exceeds the threshold, MemTable is flushed to the SSD and reorganized into an SSTable, which is then passed down level by level through compaction. However, the compaction degrades write performance and SSD endurance due to significant write amplification. To address this issue, recent proposals have mostly focused on redesigning the structure of LSM trees. We discover the prevalence of unchanged data blocks (UDBs) in the LSM-tree compaction process, i.e., UDBs are written back to SSD the same as they are read into memory, which induces extra write amplification and degrades I/O performance. In this paper, we propose a KV store design in SSD, called RemapCom, to exploit remapping on these UDBs. RemapCom first identifies UDBs with a lightweight state machine integrated into the compaction merge process. In order to increase the ratio of UDBs, RemapCom further designs a UDB retention method to further develop the benefit of remapping. Moreover, we implement a prototype of RemapCom on LevelDB by providing two primitives for the remapping. Compared to the state of the art, the evaluation results demonstrate that RemapCom can reduce write amplification by up to 53% and improve write throughput by up to 30%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信