{"title":"随机荷载作用下的最优结构拓扑预测。","authors":"Bogdan Bochenek, Katarzyna Tajs-Zielińska","doi":"10.3390/ma18122819","DOIUrl":null,"url":null,"abstract":"<p><p>Topology optimization has been present in modern engineering for several decades, becoming an important tool for solving design problems. Today, it is difficult to imagine progress in engineering design without the search for new approaches to the generation of optimal structural topologies and the development of efficient topological optimization algorithms. The generation of topologies for structures under random loads is one of many research problems where topology optimization is present. It is important to predict the topologies of structures in the case of load uncertainty, since random load changes can significantly affect resulting topologies. This paper proposes an easy-to-implement numerical approach that allows the prediction of the resulting topologies of structures. The basic idea is to transform a random loads case into the deterministic problem of multiple loads. The concept of equivalent load scheme (ELS) is introduced. Instead of generating hundreds of loads applied at random, the selection of a few representative load cases allows the reduction of the numerical effort of the computations. The numerical implementation of proposed concepts is based on the cellular automaton mimicking colliding bodies, which has been recently introduced as an efficient structural topology generator. The examples of topology optimization under randomly applied loads, performed for both plane and spatial structures, have been selected to illustrate the proposed concepts. Confirmed by results of numerical simulations, the efficiency, versatility and ease of implementation of the proposed concept can make an original contribution to research in topological optimization under loads applied in a random manner.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195034/pdf/","citationCount":"0","resultStr":"{\"title\":\"On Predicting Optimal Structural Topologies in the Presence of Random Loads.\",\"authors\":\"Bogdan Bochenek, Katarzyna Tajs-Zielińska\",\"doi\":\"10.3390/ma18122819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Topology optimization has been present in modern engineering for several decades, becoming an important tool for solving design problems. Today, it is difficult to imagine progress in engineering design without the search for new approaches to the generation of optimal structural topologies and the development of efficient topological optimization algorithms. The generation of topologies for structures under random loads is one of many research problems where topology optimization is present. It is important to predict the topologies of structures in the case of load uncertainty, since random load changes can significantly affect resulting topologies. This paper proposes an easy-to-implement numerical approach that allows the prediction of the resulting topologies of structures. The basic idea is to transform a random loads case into the deterministic problem of multiple loads. The concept of equivalent load scheme (ELS) is introduced. Instead of generating hundreds of loads applied at random, the selection of a few representative load cases allows the reduction of the numerical effort of the computations. The numerical implementation of proposed concepts is based on the cellular automaton mimicking colliding bodies, which has been recently introduced as an efficient structural topology generator. The examples of topology optimization under randomly applied loads, performed for both plane and spatial structures, have been selected to illustrate the proposed concepts. Confirmed by results of numerical simulations, the efficiency, versatility and ease of implementation of the proposed concept can make an original contribution to research in topological optimization under loads applied in a random manner.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195034/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18122819\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18122819","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
On Predicting Optimal Structural Topologies in the Presence of Random Loads.
Topology optimization has been present in modern engineering for several decades, becoming an important tool for solving design problems. Today, it is difficult to imagine progress in engineering design without the search for new approaches to the generation of optimal structural topologies and the development of efficient topological optimization algorithms. The generation of topologies for structures under random loads is one of many research problems where topology optimization is present. It is important to predict the topologies of structures in the case of load uncertainty, since random load changes can significantly affect resulting topologies. This paper proposes an easy-to-implement numerical approach that allows the prediction of the resulting topologies of structures. The basic idea is to transform a random loads case into the deterministic problem of multiple loads. The concept of equivalent load scheme (ELS) is introduced. Instead of generating hundreds of loads applied at random, the selection of a few representative load cases allows the reduction of the numerical effort of the computations. The numerical implementation of proposed concepts is based on the cellular automaton mimicking colliding bodies, which has been recently introduced as an efficient structural topology generator. The examples of topology optimization under randomly applied loads, performed for both plane and spatial structures, have been selected to illustrate the proposed concepts. Confirmed by results of numerical simulations, the efficiency, versatility and ease of implementation of the proposed concept can make an original contribution to research in topological optimization under loads applied in a random manner.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.