Steven David , Dayana Salazar , Paula Puente Cantillo, Alvaro Barrera-Ocampo
{"title":"通过包涵体形成和荧光监测的流线型大肠杆菌表达和纯化淀粉样肽。","authors":"Steven David , Dayana Salazar , Paula Puente Cantillo, Alvaro Barrera-Ocampo","doi":"10.1016/j.mimet.2025.107182","DOIUrl":null,"url":null,"abstract":"<div><div>The recombinant production of amyloid beta peptides poses significant challenges due to their high aggregation propensity and cytotoxicity in bacterial hosts. In this study, we present a streamlined and reproducible method for the expression and purification of methionine-modified Aβ40 and Aβ42 peptides in <em>Escherichia coli</em> BL21 (DE3) pLysS. By leveraging inclusion body formation, the protocol enhances yield while simplifying purification. A key feature of this approach is the incorporation of real-time fluorescence spectroscopy and microscopy using Thioflavin-S and propidium iodide, enabling non-invasive monitoring of IB formation and expression dynamics. Purification was achieved through pH modulation, anion exchange chromatography, and ultrafiltration, yielding average peptide concentrations of 3.2 ± 1.3 mg/L for Aβ40 and 4.8 ± 3.2 mg/L for Aβ42. High-performance liquid chromatography confirmed average purities of 90.2 % ± 0.8 % for Aβ40 and 84.0 % ± 17.4 % for Aβ42. The structural integrity, aggregation kinetics, and neurotoxicity of the peptides were validated by PICUP, Thioflavin-T fluorescence assays, and cytotoxicity tests in primary hippocampal neurons. This tag-free, cost-effective platform provides a scalable solution for producing biologically active amyloid beta peptides, facilitating their use in structural biology, neurodegenerative disease research, and high-throughput drug screening.</div></div>","PeriodicalId":16409,"journal":{"name":"Journal of microbiological methods","volume":"236 ","pages":"Article 107182"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streamlined E. coli expression and purification of amyloid beta peptides via inclusion body formation and fluorescence monitoring\",\"authors\":\"Steven David , Dayana Salazar , Paula Puente Cantillo, Alvaro Barrera-Ocampo\",\"doi\":\"10.1016/j.mimet.2025.107182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The recombinant production of amyloid beta peptides poses significant challenges due to their high aggregation propensity and cytotoxicity in bacterial hosts. In this study, we present a streamlined and reproducible method for the expression and purification of methionine-modified Aβ40 and Aβ42 peptides in <em>Escherichia coli</em> BL21 (DE3) pLysS. By leveraging inclusion body formation, the protocol enhances yield while simplifying purification. A key feature of this approach is the incorporation of real-time fluorescence spectroscopy and microscopy using Thioflavin-S and propidium iodide, enabling non-invasive monitoring of IB formation and expression dynamics. Purification was achieved through pH modulation, anion exchange chromatography, and ultrafiltration, yielding average peptide concentrations of 3.2 ± 1.3 mg/L for Aβ40 and 4.8 ± 3.2 mg/L for Aβ42. High-performance liquid chromatography confirmed average purities of 90.2 % ± 0.8 % for Aβ40 and 84.0 % ± 17.4 % for Aβ42. The structural integrity, aggregation kinetics, and neurotoxicity of the peptides were validated by PICUP, Thioflavin-T fluorescence assays, and cytotoxicity tests in primary hippocampal neurons. This tag-free, cost-effective platform provides a scalable solution for producing biologically active amyloid beta peptides, facilitating their use in structural biology, neurodegenerative disease research, and high-throughput drug screening.</div></div>\",\"PeriodicalId\":16409,\"journal\":{\"name\":\"Journal of microbiological methods\",\"volume\":\"236 \",\"pages\":\"Article 107182\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiological methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167701225000983\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiological methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167701225000983","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Streamlined E. coli expression and purification of amyloid beta peptides via inclusion body formation and fluorescence monitoring
The recombinant production of amyloid beta peptides poses significant challenges due to their high aggregation propensity and cytotoxicity in bacterial hosts. In this study, we present a streamlined and reproducible method for the expression and purification of methionine-modified Aβ40 and Aβ42 peptides in Escherichia coli BL21 (DE3) pLysS. By leveraging inclusion body formation, the protocol enhances yield while simplifying purification. A key feature of this approach is the incorporation of real-time fluorescence spectroscopy and microscopy using Thioflavin-S and propidium iodide, enabling non-invasive monitoring of IB formation and expression dynamics. Purification was achieved through pH modulation, anion exchange chromatography, and ultrafiltration, yielding average peptide concentrations of 3.2 ± 1.3 mg/L for Aβ40 and 4.8 ± 3.2 mg/L for Aβ42. High-performance liquid chromatography confirmed average purities of 90.2 % ± 0.8 % for Aβ40 and 84.0 % ± 17.4 % for Aβ42. The structural integrity, aggregation kinetics, and neurotoxicity of the peptides were validated by PICUP, Thioflavin-T fluorescence assays, and cytotoxicity tests in primary hippocampal neurons. This tag-free, cost-effective platform provides a scalable solution for producing biologically active amyloid beta peptides, facilitating their use in structural biology, neurodegenerative disease research, and high-throughput drug screening.
期刊介绍:
The Journal of Microbiological Methods publishes scholarly and original articles, notes and review articles. These articles must include novel and/or state-of-the-art methods, or significant improvements to existing methods. Novel and innovative applications of current methods that are validated and useful will also be published. JMM strives for scholarship, innovation and excellence. This demands scientific rigour, the best available methods and technologies, correctly replicated experiments/tests, the inclusion of proper controls, calibrations, and the correct statistical analysis. The presentation of the data must support the interpretation of the method/approach.
All aspects of microbiology are covered, except virology. These include agricultural microbiology, applied and environmental microbiology, bioassays, bioinformatics, biotechnology, biochemical microbiology, clinical microbiology, diagnostics, food monitoring and quality control microbiology, microbial genetics and genomics, geomicrobiology, microbiome methods regardless of habitat, high through-put sequencing methods and analysis, microbial pathogenesis and host responses, metabolomics, metagenomics, metaproteomics, microbial ecology and diversity, microbial physiology, microbial ultra-structure, microscopic and imaging methods, molecular microbiology, mycology, novel mathematical microbiology and modelling, parasitology, plant-microbe interactions, protein markers/profiles, proteomics, pyrosequencing, public health microbiology, radioisotopes applied to microbiology, robotics applied to microbiological methods,rumen microbiology, microbiological methods for space missions and extreme environments, sampling methods and samplers, soil and sediment microbiology, transcriptomics, veterinary microbiology, sero-diagnostics and typing/identification.