NADPH氧化酶抑制剂mitoapocynin包封纳米颗粒对大鼠DFP神经毒性模型的脱靶效应和口服游离药物治疗。

IF 3.9 4区 医学 Q1 PHARMACOLOGY & PHARMACY
Christina Meyer, Claire Holtkamp, Tyler Harm, Elizabeth Grego, Lucas Showman, Nikhil S Rao, Suraj S Vasanthi, Nyzil Massey, Balaji Narasimhan, Thimmasettappa Thippeswamy
{"title":"NADPH氧化酶抑制剂mitoapocynin包封纳米颗粒对大鼠DFP神经毒性模型的脱靶效应和口服游离药物治疗。","authors":"Christina Meyer, Claire Holtkamp, Tyler Harm, Elizabeth Grego, Lucas Showman, Nikhil S Rao, Suraj S Vasanthi, Nyzil Massey, Balaji Narasimhan, Thimmasettappa Thippeswamy","doi":"10.1080/1061186X.2025.2523995","DOIUrl":null,"url":null,"abstract":"<p><p>Acute exposure to diisopropylfluorophosphate (DFP), an organophosphate (OP), produces chronic neurological effects such as spontaneous seizures and behavioural comorbidities. Achieving optimal drug bioavailability in the brain by conventional routes to treat OP-induced neurotoxicity is challenging. Therefore, we investigated polyanhydride nanoparticles (NPs)-mediated drug delivery via the intramuscular route in rats for improved bioavailability of an antioxidant, NADPH oxidase inhibitor mitoapocynin (MPO). We evaluated the tolerability of blank NPs (4 mg, i.m.), MPO-encapsulated NPs (MPO-NP, 4 mg, i.m., single dose) and free MPO-oral (60 mg/kg, daily for three days) after exposure to DFP. Bodyweight, serum biochemistry, and kidney, lung and liver histology revealed no adverse responses to blank NPs. Markers of oxidative stress, neuronal loss and astrocyte reactivity were also no different from control. In DFP-exposed animals treated with MPO-NP and MPO-oral, there was significant weight loss, abnormal liver and kidney parameters, and elevated GP91phox and astrocytes in the brain. Our findings demonstrate that NP delivery via the intramuscular route is safe. DFP and MPO induced off-target effects, but not DFP or MPO treatment alone, which highlights the complexity of dosing regimens in OP models. Intranasal MPO-NP delivery and dose optimisation in the DFP model are required to determine the efficacy of MPO in future studies.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-11"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354291/pdf/","citationCount":"0","resultStr":"{\"title\":\"Off-target effects of the NADPH oxidase inhibitor mitoapocynin-encapsulated nanoparticles and free-drug oral treatment in a rat DFP model of neurotoxicity.\",\"authors\":\"Christina Meyer, Claire Holtkamp, Tyler Harm, Elizabeth Grego, Lucas Showman, Nikhil S Rao, Suraj S Vasanthi, Nyzil Massey, Balaji Narasimhan, Thimmasettappa Thippeswamy\",\"doi\":\"10.1080/1061186X.2025.2523995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute exposure to diisopropylfluorophosphate (DFP), an organophosphate (OP), produces chronic neurological effects such as spontaneous seizures and behavioural comorbidities. Achieving optimal drug bioavailability in the brain by conventional routes to treat OP-induced neurotoxicity is challenging. Therefore, we investigated polyanhydride nanoparticles (NPs)-mediated drug delivery via the intramuscular route in rats for improved bioavailability of an antioxidant, NADPH oxidase inhibitor mitoapocynin (MPO). We evaluated the tolerability of blank NPs (4 mg, i.m.), MPO-encapsulated NPs (MPO-NP, 4 mg, i.m., single dose) and free MPO-oral (60 mg/kg, daily for three days) after exposure to DFP. Bodyweight, serum biochemistry, and kidney, lung and liver histology revealed no adverse responses to blank NPs. Markers of oxidative stress, neuronal loss and astrocyte reactivity were also no different from control. In DFP-exposed animals treated with MPO-NP and MPO-oral, there was significant weight loss, abnormal liver and kidney parameters, and elevated GP91phox and astrocytes in the brain. Our findings demonstrate that NP delivery via the intramuscular route is safe. DFP and MPO induced off-target effects, but not DFP or MPO treatment alone, which highlights the complexity of dosing regimens in OP models. Intranasal MPO-NP delivery and dose optimisation in the DFP model are required to determine the efficacy of MPO in future studies.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354291/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2025.2523995\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2523995","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

急性暴露于二异丙基氟磷酸盐(DFP),一种有机磷酸盐(OP),会产生慢性神经系统影响,如自发癫痫发作和行为合并症。通过常规途径实现脑内最佳药物生物利用度来治疗op诱导的神经毒性是具有挑战性的。因此,我们研究了聚酸酐纳米颗粒(NPs)介导的大鼠肌内给药,以提高抗氧化剂NADPH氧化酶抑制剂mitoapocynin (MPO)的生物利用度。我们评估了暴露于DFP后的空白NPs (4mg, i.m.m)、mpo -封装NPs (MPO-NP, 4mg, i.m.m,单剂量)和游离mpo -口服(60mg/kg,每天3天)的耐受性。体重、血清生化、肾、肺和肝脏组织学均显示空白NPs无不良反应。氧化应激、神经元损失和星形胶质细胞反应性的标志物也与对照组没有什么不同。在dfp暴露的动物中,MPO-NP和mpo -口服治疗后,出现了明显的体重减轻,肝脏和肾脏参数异常,脑内GP91phox和星形胶质细胞升高。我们的研究结果表明,通过肌内途径给药是安全的。DFP和MPO诱导脱靶效应,但单独使用DFP或MPO不会引起脱靶效应,这突出了OP模型中给药方案的复杂性。在未来的研究中,确定MPO的疗效需要鼻内MPO- np递送和DFP模型中的剂量优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Off-target effects of the NADPH oxidase inhibitor mitoapocynin-encapsulated nanoparticles and free-drug oral treatment in a rat DFP model of neurotoxicity.

Acute exposure to diisopropylfluorophosphate (DFP), an organophosphate (OP), produces chronic neurological effects such as spontaneous seizures and behavioural comorbidities. Achieving optimal drug bioavailability in the brain by conventional routes to treat OP-induced neurotoxicity is challenging. Therefore, we investigated polyanhydride nanoparticles (NPs)-mediated drug delivery via the intramuscular route in rats for improved bioavailability of an antioxidant, NADPH oxidase inhibitor mitoapocynin (MPO). We evaluated the tolerability of blank NPs (4 mg, i.m.), MPO-encapsulated NPs (MPO-NP, 4 mg, i.m., single dose) and free MPO-oral (60 mg/kg, daily for three days) after exposure to DFP. Bodyweight, serum biochemistry, and kidney, lung and liver histology revealed no adverse responses to blank NPs. Markers of oxidative stress, neuronal loss and astrocyte reactivity were also no different from control. In DFP-exposed animals treated with MPO-NP and MPO-oral, there was significant weight loss, abnormal liver and kidney parameters, and elevated GP91phox and astrocytes in the brain. Our findings demonstrate that NP delivery via the intramuscular route is safe. DFP and MPO induced off-target effects, but not DFP or MPO treatment alone, which highlights the complexity of dosing regimens in OP models. Intranasal MPO-NP delivery and dose optimisation in the DFP model are required to determine the efficacy of MPO in future studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信