Anjali S Bhavikatti, Sharon Caroline Furtado, Pooja Mallya, Basavaraj B V
{"title":"天然高分子生物材料在伤口护理中的应用综述:应对挑战和未来展望。","authors":"Anjali S Bhavikatti, Sharon Caroline Furtado, Pooja Mallya, Basavaraj B V","doi":"10.1080/09205063.2025.2523503","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing is a multifaceted biological process encompassing hemostasis, inflammation, proliferation, and tissue remodeling. Globally, approximately 6.7 million individuals suffer from chronic wounds, with diabetic foot ulcers affecting 7-10% of diabetic patients. The prevalence of chronic wounds ranges from 1.3% to 3.6% in various countries, imposing substantial economic and healthcare burdens. Conventional synthetic dressings often fall short due to limited biocompatibility, inadequate antimicrobial properties, and inability to maintain an optimal healing environment. In contrast, natural polymers such as chitosan, collagen, alginate, gelatin, and hyaluronic acid offer superior biodegradability and biocompatibility, closely mimicking the extracellular matrix (ECM). These materials support critical wound healing functions including hemostasis, moisture retention, antimicrobial activity, and cellular proliferation. When engineered into hydrogels, films, and nanofibers, natural polymers can be tailored to suit diverse wound types. Unlike synthetic alternatives, they promote tissue regeneration with minimal toxicity and enhanced biological efficacy. Furthermore, the integration of smart features such as stimuli-responsive drug delivery systems and real-time wound monitoring positions these natural polymer-based dressings at the forefront of personalized, multifunctional wound care. Despite challenges related to mechanical stability and cost, these advanced bio-materials hold great promise for transforming chronic wound management.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-25"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of natural polymer based biomaterials for wound care: addressing challenges and future perspectives.\",\"authors\":\"Anjali S Bhavikatti, Sharon Caroline Furtado, Pooja Mallya, Basavaraj B V\",\"doi\":\"10.1080/09205063.2025.2523503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wound healing is a multifaceted biological process encompassing hemostasis, inflammation, proliferation, and tissue remodeling. Globally, approximately 6.7 million individuals suffer from chronic wounds, with diabetic foot ulcers affecting 7-10% of diabetic patients. The prevalence of chronic wounds ranges from 1.3% to 3.6% in various countries, imposing substantial economic and healthcare burdens. Conventional synthetic dressings often fall short due to limited biocompatibility, inadequate antimicrobial properties, and inability to maintain an optimal healing environment. In contrast, natural polymers such as chitosan, collagen, alginate, gelatin, and hyaluronic acid offer superior biodegradability and biocompatibility, closely mimicking the extracellular matrix (ECM). These materials support critical wound healing functions including hemostasis, moisture retention, antimicrobial activity, and cellular proliferation. When engineered into hydrogels, films, and nanofibers, natural polymers can be tailored to suit diverse wound types. Unlike synthetic alternatives, they promote tissue regeneration with minimal toxicity and enhanced biological efficacy. Furthermore, the integration of smart features such as stimuli-responsive drug delivery systems and real-time wound monitoring positions these natural polymer-based dressings at the forefront of personalized, multifunctional wound care. Despite challenges related to mechanical stability and cost, these advanced bio-materials hold great promise for transforming chronic wound management.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2523503\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2523503","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A review of natural polymer based biomaterials for wound care: addressing challenges and future perspectives.
Wound healing is a multifaceted biological process encompassing hemostasis, inflammation, proliferation, and tissue remodeling. Globally, approximately 6.7 million individuals suffer from chronic wounds, with diabetic foot ulcers affecting 7-10% of diabetic patients. The prevalence of chronic wounds ranges from 1.3% to 3.6% in various countries, imposing substantial economic and healthcare burdens. Conventional synthetic dressings often fall short due to limited biocompatibility, inadequate antimicrobial properties, and inability to maintain an optimal healing environment. In contrast, natural polymers such as chitosan, collagen, alginate, gelatin, and hyaluronic acid offer superior biodegradability and biocompatibility, closely mimicking the extracellular matrix (ECM). These materials support critical wound healing functions including hemostasis, moisture retention, antimicrobial activity, and cellular proliferation. When engineered into hydrogels, films, and nanofibers, natural polymers can be tailored to suit diverse wound types. Unlike synthetic alternatives, they promote tissue regeneration with minimal toxicity and enhanced biological efficacy. Furthermore, the integration of smart features such as stimuli-responsive drug delivery systems and real-time wound monitoring positions these natural polymer-based dressings at the forefront of personalized, multifunctional wound care. Despite challenges related to mechanical stability and cost, these advanced bio-materials hold great promise for transforming chronic wound management.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.