Abdurrahman Sami Koca, Vahdettin Çiftçi, Mehmet Zahit Yeken
{"title":"棉铃虫侵害和伤害对普通豆防御相关基因表达和叶绿素荧光的影响。","authors":"Abdurrahman Sami Koca, Vahdettin Çiftçi, Mehmet Zahit Yeken","doi":"10.1071/FP25020","DOIUrl":null,"url":null,"abstract":"<p><p>Plants have evolved complex defense mechanisms against biotic stressors. Many plant defense-related genes that play crucial roles in regulating defense responses have been identified in common bean (Phaseolus vulgaris L.). However, the functional roles of phenylalanine ammonia-lyase (PvPAL ), lipoxygenase (PvLOX ), glutathione S-transferase (PvGST ) and peroxidase (PvPOD ) in response to herbivory and wounding remain unclear in common bean. In this study, we investigated the expression patterns of PvPAL, PvLOX, PvGST and PvPOD genes in common bean under wounding and infestation by a major pest, Helicoverpa armigera , using quantitative real-time PCR (qRT-PCR) for the first time. The expression patterns of these genes in response to insect attack and wounding were compared. Moreover, the effects of wounding and H. armigera on the chlorophyll fluorescence parameters (F v /F m , PI ABS , ABS/RC, TRo/RC, ETo/RC and DIo/RC ) were also determined in common bean. Our results revealed that all genes were significantly upregulated in response to H. armigera , whereas PvPAL and PvPOD were downregulated in wounding. Notably, PvLOX and PvGST genes may play significant roles in the defense system of common bean against both wounding and H. armigera infestation. Furthermore, significant reductions in F v /F m , PI ABS and ETo/RC were determined under both wounding and H. armigera infestation. These findings suggest that H. armigera is more severe than wounding, leading to distinct gene expression profiles and photosynthetic responses in common bean. The study provides valuable insights for both researchers and breeders in future studies associated with insect stress and resilience breeding efforts.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of <i>Helicoverpa armigera</i> Hübner (Lepidoptera: Noctuidae) infestation and wounding on gene expression of defense-related genes and chlorophyll fluorescence in common bean.\",\"authors\":\"Abdurrahman Sami Koca, Vahdettin Çiftçi, Mehmet Zahit Yeken\",\"doi\":\"10.1071/FP25020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants have evolved complex defense mechanisms against biotic stressors. Many plant defense-related genes that play crucial roles in regulating defense responses have been identified in common bean (Phaseolus vulgaris L.). However, the functional roles of phenylalanine ammonia-lyase (PvPAL ), lipoxygenase (PvLOX ), glutathione S-transferase (PvGST ) and peroxidase (PvPOD ) in response to herbivory and wounding remain unclear in common bean. In this study, we investigated the expression patterns of PvPAL, PvLOX, PvGST and PvPOD genes in common bean under wounding and infestation by a major pest, Helicoverpa armigera , using quantitative real-time PCR (qRT-PCR) for the first time. The expression patterns of these genes in response to insect attack and wounding were compared. Moreover, the effects of wounding and H. armigera on the chlorophyll fluorescence parameters (F v /F m , PI ABS , ABS/RC, TRo/RC, ETo/RC and DIo/RC ) were also determined in common bean. Our results revealed that all genes were significantly upregulated in response to H. armigera , whereas PvPAL and PvPOD were downregulated in wounding. Notably, PvLOX and PvGST genes may play significant roles in the defense system of common bean against both wounding and H. armigera infestation. Furthermore, significant reductions in F v /F m , PI ABS and ETo/RC were determined under both wounding and H. armigera infestation. These findings suggest that H. armigera is more severe than wounding, leading to distinct gene expression profiles and photosynthetic responses in common bean. The study provides valuable insights for both researchers and breeders in future studies associated with insect stress and resilience breeding efforts.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"52 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP25020\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP25020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
植物已经进化出复杂的防御机制来对抗生物压力。在菜豆(Phaseolus vulgaris L.)中发现了许多在防御反应调控中起重要作用的植物防御相关基因。然而,苯丙氨酸解氨酶(PvPAL)、脂氧合酶(PvLOX)、谷胱甘肽s -转移酶(PvGST)和过氧化物酶(PvPOD)在草食和伤害反应中的功能作用尚不清楚。本研究首次利用实时荧光定量PCR (qRT-PCR)技术,研究了在棉蚜伤害侵染下普通豆PvPAL、PvLOX、PvGST和PvPOD基因的表达谱。比较了这些基因在昆虫攻击和伤害反应中的表达模式。此外,还测定了伤害和棉蚜对普通豆叶绿素荧光参数(F v /F m、PI ABS、ABS/RC、TRo/RC、ETo/RC和DIo/RC)的影响。我们的研究结果表明,所有基因在对棉蚜的反应中都显著上调,而PvPAL和PvPOD在伤害中则下调。值得注意的是,PvLOX和PvGST基因可能在普通豆抵御伤害和棉蚜侵染的防御系统中发挥重要作用。此外,在伤害和棉铃虫侵染下,F v /F m、PI ABS和ETo/RC均显著降低。这些结果表明,棉铃虫对普通豆的伤害比伤害更严重,导致了不同的基因表达谱和光合反应。该研究为研究人员和育种人员提供了有价值的见解,以便在未来的研究中与昆虫压力和弹性育种工作相关。
Impact of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) infestation and wounding on gene expression of defense-related genes and chlorophyll fluorescence in common bean.
Plants have evolved complex defense mechanisms against biotic stressors. Many plant defense-related genes that play crucial roles in regulating defense responses have been identified in common bean (Phaseolus vulgaris L.). However, the functional roles of phenylalanine ammonia-lyase (PvPAL ), lipoxygenase (PvLOX ), glutathione S-transferase (PvGST ) and peroxidase (PvPOD ) in response to herbivory and wounding remain unclear in common bean. In this study, we investigated the expression patterns of PvPAL, PvLOX, PvGST and PvPOD genes in common bean under wounding and infestation by a major pest, Helicoverpa armigera , using quantitative real-time PCR (qRT-PCR) for the first time. The expression patterns of these genes in response to insect attack and wounding were compared. Moreover, the effects of wounding and H. armigera on the chlorophyll fluorescence parameters (F v /F m , PI ABS , ABS/RC, TRo/RC, ETo/RC and DIo/RC ) were also determined in common bean. Our results revealed that all genes were significantly upregulated in response to H. armigera , whereas PvPAL and PvPOD were downregulated in wounding. Notably, PvLOX and PvGST genes may play significant roles in the defense system of common bean against both wounding and H. armigera infestation. Furthermore, significant reductions in F v /F m , PI ABS and ETo/RC were determined under both wounding and H. armigera infestation. These findings suggest that H. armigera is more severe than wounding, leading to distinct gene expression profiles and photosynthetic responses in common bean. The study provides valuable insights for both researchers and breeders in future studies associated with insect stress and resilience breeding efforts.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.