{"title":"支撑分子水平蛋白质进化的物理原理。","authors":"Jorge A. Vila","doi":"10.1007/s00249-025-01776-6","DOIUrl":null,"url":null,"abstract":"<div><p>Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after <i>n</i> mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"54 5","pages":"201 - 211"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical principles underpinning molecular-level protein evolution\",\"authors\":\"Jorge A. Vila\",\"doi\":\"10.1007/s00249-025-01776-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after <i>n</i> mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field.</p></div>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\"54 5\",\"pages\":\"201 - 211\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00249-025-01776-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-025-01776-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Physical principles underpinning molecular-level protein evolution
Since protein mutations are the main driving force of evolution at a molecular level, a proper analysis of the factors controlling them—such as the proteins’ robustness, the evolutionary pathways, the number of ancestors, the epistasis, the post-translational modifications, and the location and the order of mutations—will enable us to find a response to several crucial queries in evolutionary biology. Among them, we highlight the following: At the molecular level, what factors determine whether protein evolution is repeatable? Aiming at finding an answer to this and several other significant questions behind protein evolvability, we distinguish two evolutionary models in our analysis: convergent and divergent, based on whether or not a “target sequence” needs to be reached after n mutational steps beginning with a wild-type protein sequence (from an unknown ancestor). Preliminary results suggest—regardless of whether the evolution is convergent or divergent—a tight relationship between the thermodynamic hypothesis (or Anfinsen’s dogma) and the protein evolution at the molecular level. This conjecture will allow us to uncover how fundamental physical principles guide protein evolution and to gain a deeper grasp of mutationally driven evolutionary processes and the factors that influence them. Breaking down complex evolutionary problems into manageable pieces—without compromising the vision of the problem as a whole—could lead to effective solutions to critical evolutionary biology challenges, paving the way for further progress in this field.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.