培养角膜上皮干细胞序列传代过程中异质性和分子变化的单细胞分析。

IF 3.6 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2025-06-17 DOI:10.1093/stmcls/sxaf041
Usanee Reinprayoon, Supaporn Khramchantuk, Natthida Kittimawikrom, Praewphan Ingrungruanglert, Sarinya Phodang, Thanakorn Jaemthaworn, Sira Sriswasdi, Nipan Israsena
{"title":"培养角膜上皮干细胞序列传代过程中异质性和分子变化的单细胞分析。","authors":"Usanee Reinprayoon, Supaporn Khramchantuk, Natthida Kittimawikrom, Praewphan Ingrungruanglert, Sarinya Phodang, Thanakorn Jaemthaworn, Sira Sriswasdi, Nipan Israsena","doi":"10.1093/stmcls/sxaf041","DOIUrl":null,"url":null,"abstract":"<p><p>The maintenance of corneal epithelial homeostasis relies on limbal stem cells (LSCs) located at the limbus. Although short-term cultured LSC transplantation effectively treats LSC deficiency, prolonged culture leads to stemness loss and abortive colony formation, and the mechanisms remain elusive. In this study, we employed single-cell transcriptomics to investigate LSC population dynamics and changes in gene expression during extended serial culture. Transcriptomic data from 22,708 cells revealed 19 clusters, identifying three distinct limbal progenitor populations (Progenitors 1-3) with unique transcriptional profiles and cell division kinetics. All progenitor subgroups expressed stemness-related genes such as ANLN, AURKB, and HMGB2 and were detected at all stages of the cell cycle. Notably, Progenitor3 exhibited the highest levels of genes associated with stemness and the G2/M checkpoint, including ANLN, PLK1, AURKA, HMGB2, and TOP2A, and had the largest proportion of cells in G2/M. Progenitor2 was marked by histone H1 expression, while Progenitor1 displayed distinctive cell cycle kinetics. Despite stable proportions of the three progenitor populations throughout prolonged passaging, mitochondrial gene downregulation and ribosomal gene upregulation were observed. Treatment with the small molecule RepSox partially preserved LSC maintenance in long-term culture by inhibiting the epithelial-mesenchymal transition program and modulating energy and metabolic pathways. These findings provide insights for optimizing in vitro LSC expansion for cell-based therapies.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell analysis of heterogeneity and molecular changes in cultured corneal epithelial stem cells during serial passage.\",\"authors\":\"Usanee Reinprayoon, Supaporn Khramchantuk, Natthida Kittimawikrom, Praewphan Ingrungruanglert, Sarinya Phodang, Thanakorn Jaemthaworn, Sira Sriswasdi, Nipan Israsena\",\"doi\":\"10.1093/stmcls/sxaf041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The maintenance of corneal epithelial homeostasis relies on limbal stem cells (LSCs) located at the limbus. Although short-term cultured LSC transplantation effectively treats LSC deficiency, prolonged culture leads to stemness loss and abortive colony formation, and the mechanisms remain elusive. In this study, we employed single-cell transcriptomics to investigate LSC population dynamics and changes in gene expression during extended serial culture. Transcriptomic data from 22,708 cells revealed 19 clusters, identifying three distinct limbal progenitor populations (Progenitors 1-3) with unique transcriptional profiles and cell division kinetics. All progenitor subgroups expressed stemness-related genes such as ANLN, AURKB, and HMGB2 and were detected at all stages of the cell cycle. Notably, Progenitor3 exhibited the highest levels of genes associated with stemness and the G2/M checkpoint, including ANLN, PLK1, AURKA, HMGB2, and TOP2A, and had the largest proportion of cells in G2/M. Progenitor2 was marked by histone H1 expression, while Progenitor1 displayed distinctive cell cycle kinetics. Despite stable proportions of the three progenitor populations throughout prolonged passaging, mitochondrial gene downregulation and ribosomal gene upregulation were observed. Treatment with the small molecule RepSox partially preserved LSC maintenance in long-term culture by inhibiting the epithelial-mesenchymal transition program and modulating energy and metabolic pathways. These findings provide insights for optimizing in vitro LSC expansion for cell-based therapies.</p>\",\"PeriodicalId\":231,\"journal\":{\"name\":\"STEM CELLS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STEM CELLS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stmcls/sxaf041\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxaf041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

角膜上皮稳态的维持依赖于位于角膜缘的角膜缘干细胞(LSCs)。虽然短期培养的LSC移植能有效治疗LSC缺陷,但长期培养会导致茎秆丧失和菌落形成失败,其机制尚不清楚。在这项研究中,我们利用单细胞转录组学研究了LSC群体动态和基因表达在扩展连续培养过程中的变化。来自22,708个细胞的转录组学数据显示出19个簇,鉴定出三种不同的缘祖群体(progenitor 1-3),它们具有独特的转录谱和细胞分裂动力学。所有祖细胞亚群表达与干细胞相关的基因,如ANLN、AURKB和HMGB2,并在细胞周期的所有阶段检测到。值得注意的是,与干性和G2/M检查点相关的基因水平最高的是progenor3,包括ANLN、PLK1、AURKA、HMGB2和TOP2A,并且在G2/M中的细胞比例最大。progenor2以组蛋白H1表达为标志,而progenor1表现出独特的细胞周期动力学。尽管在长时间传代过程中,三个祖群体的比例稳定,但线粒体基因下调和核糖体基因上调被观察到。小分子RepSox通过抑制上皮-间质转化程序和调节能量和代谢途径,在长期培养中部分保留了LSC的维持。这些发现为优化体外LSC扩增用于细胞治疗提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-cell analysis of heterogeneity and molecular changes in cultured corneal epithelial stem cells during serial passage.

The maintenance of corneal epithelial homeostasis relies on limbal stem cells (LSCs) located at the limbus. Although short-term cultured LSC transplantation effectively treats LSC deficiency, prolonged culture leads to stemness loss and abortive colony formation, and the mechanisms remain elusive. In this study, we employed single-cell transcriptomics to investigate LSC population dynamics and changes in gene expression during extended serial culture. Transcriptomic data from 22,708 cells revealed 19 clusters, identifying three distinct limbal progenitor populations (Progenitors 1-3) with unique transcriptional profiles and cell division kinetics. All progenitor subgroups expressed stemness-related genes such as ANLN, AURKB, and HMGB2 and were detected at all stages of the cell cycle. Notably, Progenitor3 exhibited the highest levels of genes associated with stemness and the G2/M checkpoint, including ANLN, PLK1, AURKA, HMGB2, and TOP2A, and had the largest proportion of cells in G2/M. Progenitor2 was marked by histone H1 expression, while Progenitor1 displayed distinctive cell cycle kinetics. Despite stable proportions of the three progenitor populations throughout prolonged passaging, mitochondrial gene downregulation and ribosomal gene upregulation were observed. Treatment with the small molecule RepSox partially preserved LSC maintenance in long-term culture by inhibiting the epithelial-mesenchymal transition program and modulating energy and metabolic pathways. These findings provide insights for optimizing in vitro LSC expansion for cell-based therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信