利用合金效应可调谐电子结构的超细PtRu合金纳米颗粒用于海水电解高效制氢。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yanqiu Li, Jing Yu, Qi Liu, Jingyuan Liu, Rongrong Chen, Jiahui Zhu, Cheng-Yan Xu, Jun Wang
{"title":"利用合金效应可调谐电子结构的超细PtRu合金纳米颗粒用于海水电解高效制氢。","authors":"Yanqiu Li, Jing Yu, Qi Liu, Jingyuan Liu, Rongrong Chen, Jiahui Zhu, Cheng-Yan Xu, Jun Wang","doi":"10.1002/smtd.202501076","DOIUrl":null,"url":null,"abstract":"<p><p>Platinum (Pt)-based materials are considered as the most efficient electrocatalysts for the hydrogen evolution reaction (HER), however, reducing the Pt dosage while maintaining a high catalytic efficiency remains a great challenge. In this study, an advanced HER electrocatalyst is designed based on ultrafine 2.64 nm platinum-ruthenium (PtRu) alloy nanoparticles anchored on porous carbon nanofibers (PCNFs). The experimental and theoretical calculation results show that the synergistic effect between Pt and Ru can not only promote the high dispersion of alloy nanoparticles on PCNFs in the microstructure but also regulate the coordination environment of Pt and Ru in the electronic environment. These combined effects enhance water adsorption, reduce the energy barrier of hydrolysis, and provide a suitable d-band center for the HER. Consequently, the prepared PtRu/PCNF electrocatalyst exhibits excellent catalytic activity with low Pt and Ru loadings in alkaline and alkaline seawater. The overpotentials at 10 mA cm<sup>-2</sup> are 23.1 and 19.5 mV, respectively, with Tafel slopes of 23.5 and 20.7 dec<sup>-1</sup>, outperforming commercial Pt/C (20 wt%). This study presents a new type of electrocatalyst for hydrogen production via water and seawater electrolysis.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2501076"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafine PtRu Alloy Nanoparticles with Tunable Electron Structure by Alloy Effect for Efficient Hydrogen Production Through Seawater Electrolysis.\",\"authors\":\"Yanqiu Li, Jing Yu, Qi Liu, Jingyuan Liu, Rongrong Chen, Jiahui Zhu, Cheng-Yan Xu, Jun Wang\",\"doi\":\"10.1002/smtd.202501076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Platinum (Pt)-based materials are considered as the most efficient electrocatalysts for the hydrogen evolution reaction (HER), however, reducing the Pt dosage while maintaining a high catalytic efficiency remains a great challenge. In this study, an advanced HER electrocatalyst is designed based on ultrafine 2.64 nm platinum-ruthenium (PtRu) alloy nanoparticles anchored on porous carbon nanofibers (PCNFs). The experimental and theoretical calculation results show that the synergistic effect between Pt and Ru can not only promote the high dispersion of alloy nanoparticles on PCNFs in the microstructure but also regulate the coordination environment of Pt and Ru in the electronic environment. These combined effects enhance water adsorption, reduce the energy barrier of hydrolysis, and provide a suitable d-band center for the HER. Consequently, the prepared PtRu/PCNF electrocatalyst exhibits excellent catalytic activity with low Pt and Ru loadings in alkaline and alkaline seawater. The overpotentials at 10 mA cm<sup>-2</sup> are 23.1 and 19.5 mV, respectively, with Tafel slopes of 23.5 and 20.7 dec<sup>-1</sup>, outperforming commercial Pt/C (20 wt%). This study presents a new type of electrocatalyst for hydrogen production via water and seawater electrolysis.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2501076\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501076\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501076","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

铂基材料被认为是析氢反应(HER)最有效的电催化剂,但如何在保持高催化效率的同时减少铂的用量仍然是一个巨大的挑战。在这项研究中,基于超细的2.64 nm铂钌(PtRu)合金纳米颗粒锚定在多孔碳纳米纤维(PCNFs)上,设计了一种先进的HER电催化剂。实验和理论计算结果表明,Pt和Ru之间的协同效应不仅可以促进合金纳米颗粒在PCNFs上的高分散,还可以调节Pt和Ru在电子环境中的配位环境。这些综合作用增强了水吸附,降低了水解能垒,并为HER提供了合适的d波段中心。因此,制备的PtRu/PCNF电催化剂在碱性和碱性海水中表现出优异的低Pt和低Ru负载催化活性。10 mA cm-2下的过电位分别为23.1和19.5 mV, Tafel斜率为23.5和20.7 dec1,优于商业Pt/C (20 wt%)。介绍了一种用于水电解和海水电解制氢的新型电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrafine PtRu Alloy Nanoparticles with Tunable Electron Structure by Alloy Effect for Efficient Hydrogen Production Through Seawater Electrolysis.

Platinum (Pt)-based materials are considered as the most efficient electrocatalysts for the hydrogen evolution reaction (HER), however, reducing the Pt dosage while maintaining a high catalytic efficiency remains a great challenge. In this study, an advanced HER electrocatalyst is designed based on ultrafine 2.64 nm platinum-ruthenium (PtRu) alloy nanoparticles anchored on porous carbon nanofibers (PCNFs). The experimental and theoretical calculation results show that the synergistic effect between Pt and Ru can not only promote the high dispersion of alloy nanoparticles on PCNFs in the microstructure but also regulate the coordination environment of Pt and Ru in the electronic environment. These combined effects enhance water adsorption, reduce the energy barrier of hydrolysis, and provide a suitable d-band center for the HER. Consequently, the prepared PtRu/PCNF electrocatalyst exhibits excellent catalytic activity with low Pt and Ru loadings in alkaline and alkaline seawater. The overpotentials at 10 mA cm-2 are 23.1 and 19.5 mV, respectively, with Tafel slopes of 23.5 and 20.7 dec-1, outperforming commercial Pt/C (20 wt%). This study presents a new type of electrocatalyst for hydrogen production via water and seawater electrolysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信