3R-MoS2的压力诱导金属化和等结构转变。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Azkar Saeed Ahmad, Mangladeep Bhullar, Kenny Stahl, Wenting Lu, Taiyi Chen, Lei Feng, Xin Hu, Qian Zhang, Konstantin Glazyrin, Martin Kunz, Yusheng Zhao, Shanmin Wang, Yansun Yao, Elissaios Stavrou
{"title":"3R-MoS2的压力诱导金属化和等结构转变。","authors":"Azkar Saeed Ahmad,&nbsp;Mangladeep Bhullar,&nbsp;Kenny Stahl,&nbsp;Wenting Lu,&nbsp;Taiyi Chen,&nbsp;Lei Feng,&nbsp;Xin Hu,&nbsp;Qian Zhang,&nbsp;Konstantin Glazyrin,&nbsp;Martin Kunz,&nbsp;Yusheng Zhao,&nbsp;Shanmin Wang,&nbsp;Yansun Yao,&nbsp;Elissaios Stavrou","doi":"10.1002/advs.202505031","DOIUrl":null,"url":null,"abstract":"<p>At ambient conditions 3R-polytypes of transition metal dichalcogenides (TMDs) demonstrate fascinating properties because of their unique layer stacking. Understanding the structure-property relationship is essential for the realization of their use in spintronic, valleytronic, and optoelectronic applications. Herein, after the high pressure-temperature synthesis of 3R-MoS<sub>2</sub> in a large volume cubic press, a concomitant experimental and theoretical high-pressure study of 3R-MoS<sub>2</sub> is reported, leading to the discovery of pressure-induced reversible isostructural phase transitions without symmetry breaking. Concurrent with the isostructural transitions, a semiconductor-to-metal transition is observed, owing to strong interlayer interaction and charge redistribution across the van der Waals gap under pressure. The pressure-induced enhancement of interlayer interactions together with the robust intrinsic layer stacking in 3R-MoS<sub>2</sub> prevent the layers from sliding under pressure and hinder a corresponding volume collapse. This study on continuous pressure-tuning of crystal and electronic structure in 3R-MoS<sub>2</sub> will play a vital role in developing the next-generation devices involving coupling of structural, optical, and electrical properties of 3R-polytypes of TMDs and other layered materials.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 35","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505031","citationCount":"0","resultStr":"{\"title\":\"Pressure-Induced Metallization and Isostructural Transitions in 3R-MoS2\",\"authors\":\"Azkar Saeed Ahmad,&nbsp;Mangladeep Bhullar,&nbsp;Kenny Stahl,&nbsp;Wenting Lu,&nbsp;Taiyi Chen,&nbsp;Lei Feng,&nbsp;Xin Hu,&nbsp;Qian Zhang,&nbsp;Konstantin Glazyrin,&nbsp;Martin Kunz,&nbsp;Yusheng Zhao,&nbsp;Shanmin Wang,&nbsp;Yansun Yao,&nbsp;Elissaios Stavrou\",\"doi\":\"10.1002/advs.202505031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>At ambient conditions 3R-polytypes of transition metal dichalcogenides (TMDs) demonstrate fascinating properties because of their unique layer stacking. Understanding the structure-property relationship is essential for the realization of their use in spintronic, valleytronic, and optoelectronic applications. Herein, after the high pressure-temperature synthesis of 3R-MoS<sub>2</sub> in a large volume cubic press, a concomitant experimental and theoretical high-pressure study of 3R-MoS<sub>2</sub> is reported, leading to the discovery of pressure-induced reversible isostructural phase transitions without symmetry breaking. Concurrent with the isostructural transitions, a semiconductor-to-metal transition is observed, owing to strong interlayer interaction and charge redistribution across the van der Waals gap under pressure. The pressure-induced enhancement of interlayer interactions together with the robust intrinsic layer stacking in 3R-MoS<sub>2</sub> prevent the layers from sliding under pressure and hinder a corresponding volume collapse. This study on continuous pressure-tuning of crystal and electronic structure in 3R-MoS<sub>2</sub> will play a vital role in developing the next-generation devices involving coupling of structural, optical, and electrical properties of 3R-polytypes of TMDs and other layered materials.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 35\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505031\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505031","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在环境条件下,3r -多型过渡金属二硫族化合物(TMDs)由于其独特的层堆叠而表现出迷人的性能。了解结构-性质关系对于实现它们在自旋电子、谷电子和光电子应用中的应用至关重要。本文报道了在大体积立方压机中高压-高温合成3R-MoS2后,对3R-MoS2进行了高压实验和理论研究,发现了压力诱导的可逆等结构相变而不破坏对称。在等结构转变的同时,观察到半导体到金属的转变,这是由于层间强烈的相互作用和电荷在压力下穿过范德华隙的重新分布。压力诱导的层间相互作用的增强以及3R-MoS2中鲁棒的本禀层堆叠防止了层在压力下滑动,并阻碍了相应的体积坍塌。该研究对3R-MoS2晶体和电子结构的连续压力调谐将在开发下一代器件中发挥重要作用,这些器件涉及3r -多型tmd和其他层状材料的结构、光学和电学性质的耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pressure-Induced Metallization and Isostructural Transitions in 3R-MoS2

Pressure-Induced Metallization and Isostructural Transitions in 3R-MoS2

Pressure-Induced Metallization and Isostructural Transitions in 3R-MoS2

Pressure-Induced Metallization and Isostructural Transitions in 3R-MoS2

Pressure-Induced Metallization and Isostructural Transitions in 3R-MoS2

At ambient conditions 3R-polytypes of transition metal dichalcogenides (TMDs) demonstrate fascinating properties because of their unique layer stacking. Understanding the structure-property relationship is essential for the realization of their use in spintronic, valleytronic, and optoelectronic applications. Herein, after the high pressure-temperature synthesis of 3R-MoS2 in a large volume cubic press, a concomitant experimental and theoretical high-pressure study of 3R-MoS2 is reported, leading to the discovery of pressure-induced reversible isostructural phase transitions without symmetry breaking. Concurrent with the isostructural transitions, a semiconductor-to-metal transition is observed, owing to strong interlayer interaction and charge redistribution across the van der Waals gap under pressure. The pressure-induced enhancement of interlayer interactions together with the robust intrinsic layer stacking in 3R-MoS2 prevent the layers from sliding under pressure and hinder a corresponding volume collapse. This study on continuous pressure-tuning of crystal and electronic structure in 3R-MoS2 will play a vital role in developing the next-generation devices involving coupling of structural, optical, and electrical properties of 3R-polytypes of TMDs and other layered materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信