{"title":"用于精密抗体工程的结构引导图神经网络。","authors":"Ze-Yu Sun, Jiayi Yuan, Divya Jaiswal, Jingxuan Ge, Tianjian Liang, Jiahui Wei, Jinghong Cao, Yulong Li, Xiaojie Chu, Yan Chen, Ying Xue, Wei Li, Tingjun Hou, Zhiwei Feng","doi":"10.1002/advs.202504278","DOIUrl":null,"url":null,"abstract":"<p>Antibodies are crucial for medical applications, yet traditional methods for designing sequences are inefficient. This study introduces AntiBMPNN, an advanced deep-learning framework that leverages an antibody-specific 3D dataset, a fine-tuned message-passing neural network (MPNN), a frequency-based scoring function, and AlphaFold 3 to achieve highly accurate antibody sequence design. AntiBMPNN surpasses ProteinMPNN with a perplexity of 1.5 and over 80% sequence recovery. Its scoring function, combined with AlphaFold 3, effectively prioritizes sequences based on structural recovery, positional stability, and biochemical or complex properties. Experimental validation highlights a 75% success rate in single-point antibody design. AntiBMPNN consistently outperforms AbMPNN, AntiFold, and ProteinMPNN in designing complementarity determining regions (CDR) 1-3, yielding stronger binding affinities. For CDR1 of huJ3 (anti-HIV nanobody), it achieves a half maximal effective concentration (EC₅₀) of 9.2 nM (nanomolar), better than ProteinMPNN (135.2 nM) and AntiFold (59.3 nM), and comparable to AbMPNN (6.6 nM). For CDR2 of the D6 nanobody (targeting CD16), AntiBMPNN reaches 0.3 nM, outperforming AbMPNN (2.3 nM), AntiFold (0.7 nM), and ProteinMPNN (0.7 nM). In CDR3 of huJ3, it achieves 1.7 nM, surpassing AbMPNN (51.2 nM), with no detectable activity from AntiFold or ProteinMPNN. These findings confirm that AntiBMPNN-designed sequences for J3 and D6 outperform the originals, highlighting its potential to improve therapeutic antibody design.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 35","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202504278","citationCount":"0","resultStr":"{\"title\":\"AntiBMPNN: Structure-Guided Graph Neural Networks for Precision Antibody Engineering\",\"authors\":\"Ze-Yu Sun, Jiayi Yuan, Divya Jaiswal, Jingxuan Ge, Tianjian Liang, Jiahui Wei, Jinghong Cao, Yulong Li, Xiaojie Chu, Yan Chen, Ying Xue, Wei Li, Tingjun Hou, Zhiwei Feng\",\"doi\":\"10.1002/advs.202504278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antibodies are crucial for medical applications, yet traditional methods for designing sequences are inefficient. This study introduces AntiBMPNN, an advanced deep-learning framework that leverages an antibody-specific 3D dataset, a fine-tuned message-passing neural network (MPNN), a frequency-based scoring function, and AlphaFold 3 to achieve highly accurate antibody sequence design. AntiBMPNN surpasses ProteinMPNN with a perplexity of 1.5 and over 80% sequence recovery. Its scoring function, combined with AlphaFold 3, effectively prioritizes sequences based on structural recovery, positional stability, and biochemical or complex properties. Experimental validation highlights a 75% success rate in single-point antibody design. AntiBMPNN consistently outperforms AbMPNN, AntiFold, and ProteinMPNN in designing complementarity determining regions (CDR) 1-3, yielding stronger binding affinities. For CDR1 of huJ3 (anti-HIV nanobody), it achieves a half maximal effective concentration (EC₅₀) of 9.2 nM (nanomolar), better than ProteinMPNN (135.2 nM) and AntiFold (59.3 nM), and comparable to AbMPNN (6.6 nM). For CDR2 of the D6 nanobody (targeting CD16), AntiBMPNN reaches 0.3 nM, outperforming AbMPNN (2.3 nM), AntiFold (0.7 nM), and ProteinMPNN (0.7 nM). In CDR3 of huJ3, it achieves 1.7 nM, surpassing AbMPNN (51.2 nM), with no detectable activity from AntiFold or ProteinMPNN. These findings confirm that AntiBMPNN-designed sequences for J3 and D6 outperform the originals, highlighting its potential to improve therapeutic antibody design.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 35\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202504278\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202504278\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202504278","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
AntiBMPNN: Structure-Guided Graph Neural Networks for Precision Antibody Engineering
Antibodies are crucial for medical applications, yet traditional methods for designing sequences are inefficient. This study introduces AntiBMPNN, an advanced deep-learning framework that leverages an antibody-specific 3D dataset, a fine-tuned message-passing neural network (MPNN), a frequency-based scoring function, and AlphaFold 3 to achieve highly accurate antibody sequence design. AntiBMPNN surpasses ProteinMPNN with a perplexity of 1.5 and over 80% sequence recovery. Its scoring function, combined with AlphaFold 3, effectively prioritizes sequences based on structural recovery, positional stability, and biochemical or complex properties. Experimental validation highlights a 75% success rate in single-point antibody design. AntiBMPNN consistently outperforms AbMPNN, AntiFold, and ProteinMPNN in designing complementarity determining regions (CDR) 1-3, yielding stronger binding affinities. For CDR1 of huJ3 (anti-HIV nanobody), it achieves a half maximal effective concentration (EC₅₀) of 9.2 nM (nanomolar), better than ProteinMPNN (135.2 nM) and AntiFold (59.3 nM), and comparable to AbMPNN (6.6 nM). For CDR2 of the D6 nanobody (targeting CD16), AntiBMPNN reaches 0.3 nM, outperforming AbMPNN (2.3 nM), AntiFold (0.7 nM), and ProteinMPNN (0.7 nM). In CDR3 of huJ3, it achieves 1.7 nM, surpassing AbMPNN (51.2 nM), with no detectable activity from AntiFold or ProteinMPNN. These findings confirm that AntiBMPNN-designed sequences for J3 and D6 outperform the originals, highlighting its potential to improve therapeutic antibody design.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.