Komari Suzuki, Daisuke Asai, Robert J Herman, Sheila W Njoroge, Satoshi Yoshida, Sota Sato, Semin Lee, Kazukuni Tahara
{"title":"脱氢联苯[12]环烯的合成、结构和性质:含两种不同反芳基的富碳化合物。","authors":"Komari Suzuki, Daisuke Asai, Robert J Herman, Sheila W Njoroge, Satoshi Yoshida, Sota Sato, Semin Lee, Kazukuni Tahara","doi":"10.1002/asia.202500754","DOIUrl":null,"url":null,"abstract":"<p><p>In this work we report the synthesis, structure, and electronic properties of carbon-rich compounds dehydrobiphenyleno[12]annulenes (DBP[12]As) comprising antiaromatic four-membered rings (4MR) and 12-membered ring (12MR). Ultraviolet-visible absorption spectra and electrochemical behaviors of DBP[12]As confirmed their relatively narrow highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap values and high HOMO energy levels, which were supported by density functional theory simulations. Parent DBP[12]A adopts a slipped herringbone structure in a crystalline state, with the molecules forming 1D stacks via π-π interactions. The experimentally derived bond lengths, bonding analyses using the Wiberg bond indices, and localized orbital locator calculation support a stronger double bond character for the 12MR bonds than the 4MR bonds in the inner six-membered ring. The chemical shifts of hydrogens in <sup>1</sup>H NMR spectra, as well as magnetically induced ring current analyses using quantum chemical calculations, indicate that the 4MRs have stronger antiaromatic character than the 12MR. The present information is useful for a fundamental understanding of carbon-rich compounds with different antiaromatic units as well as designing novel molecules with unique electronic properties.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e00754"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Structures, and Properties of Dehydrobiphenyleno[12]Annulenes: Carbon-Rich Compounds Comprising Two Different Antiaromatic Units.\",\"authors\":\"Komari Suzuki, Daisuke Asai, Robert J Herman, Sheila W Njoroge, Satoshi Yoshida, Sota Sato, Semin Lee, Kazukuni Tahara\",\"doi\":\"10.1002/asia.202500754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work we report the synthesis, structure, and electronic properties of carbon-rich compounds dehydrobiphenyleno[12]annulenes (DBP[12]As) comprising antiaromatic four-membered rings (4MR) and 12-membered ring (12MR). Ultraviolet-visible absorption spectra and electrochemical behaviors of DBP[12]As confirmed their relatively narrow highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap values and high HOMO energy levels, which were supported by density functional theory simulations. Parent DBP[12]A adopts a slipped herringbone structure in a crystalline state, with the molecules forming 1D stacks via π-π interactions. The experimentally derived bond lengths, bonding analyses using the Wiberg bond indices, and localized orbital locator calculation support a stronger double bond character for the 12MR bonds than the 4MR bonds in the inner six-membered ring. The chemical shifts of hydrogens in <sup>1</sup>H NMR spectra, as well as magnetically induced ring current analyses using quantum chemical calculations, indicate that the 4MRs have stronger antiaromatic character than the 12MR. The present information is useful for a fundamental understanding of carbon-rich compounds with different antiaromatic units as well as designing novel molecules with unique electronic properties.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e00754\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202500754\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500754","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis, Structures, and Properties of Dehydrobiphenyleno[12]Annulenes: Carbon-Rich Compounds Comprising Two Different Antiaromatic Units.
In this work we report the synthesis, structure, and electronic properties of carbon-rich compounds dehydrobiphenyleno[12]annulenes (DBP[12]As) comprising antiaromatic four-membered rings (4MR) and 12-membered ring (12MR). Ultraviolet-visible absorption spectra and electrochemical behaviors of DBP[12]As confirmed their relatively narrow highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap values and high HOMO energy levels, which were supported by density functional theory simulations. Parent DBP[12]A adopts a slipped herringbone structure in a crystalline state, with the molecules forming 1D stacks via π-π interactions. The experimentally derived bond lengths, bonding analyses using the Wiberg bond indices, and localized orbital locator calculation support a stronger double bond character for the 12MR bonds than the 4MR bonds in the inner six-membered ring. The chemical shifts of hydrogens in 1H NMR spectra, as well as magnetically induced ring current analyses using quantum chemical calculations, indicate that the 4MRs have stronger antiaromatic character than the 12MR. The present information is useful for a fundamental understanding of carbon-rich compounds with different antiaromatic units as well as designing novel molecules with unique electronic properties.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).