Ashish K. Kumawat, Ambuj Mishra, Indra Sulania, Satyapal S. Rathore, Rashi Nathawat
{"title":"SHI辐照引起的[公式略]分子和微观结构的变化","authors":"Ashish K. Kumawat, Ambuj Mishra, Indra Sulania, Satyapal S. Rathore, Rashi Nathawat","doi":"10.1016/j.radphyschem.2025.113079","DOIUrl":null,"url":null,"abstract":"Swift heavy ion beam irradiation is a highly efficient method for introducing defects into a material system, thereby facilitating functional property modification. In this study, <mml:math altimg=\"si8.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>P</mml:mi><mml:mi>A</mml:mi><mml:mi>N</mml:mi><mml:mi>I</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msub><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">−</mml:mo><mml:msub><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>7</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> polyaniline-vanadium pentoxide composites were synthesized via a hydrothermal method. They Subsequently underwent irradiation with <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mi>N</mml:mi><mml:msup><mml:mrow><mml:mi>i</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>11</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> ions at a fluence of <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mn>2</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>11</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mi>i</mml:mi><mml:mi>o</mml:mi><mml:mi>n</mml:mi><mml:mi>s</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">cm</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>, having energy of 150 MeV. Advanced characterization techniques were then employed to analyze the structural, morphological, electronic, and optical properties of both the Pre-irradiated and post-irradiated samples. In XRD, the Bragg reflections observed were attributed to two distinct phases present in the material, indicating that the sample was pure and composed solely of the intended constituents without any impurity. The HRTEM images revealed an interatomic distance of 0.35 nm, corresponding to the (0-13) lattice plane of orthorhombic <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. Additionally, the SAED demonstrates a diffraction pattern characteristic of polycrystalline <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. FESEM analysis demonstrated significant changes in microstructure due to the heating effects of irradiation. Post irradiation, the microstructure of the material undergoes fragmentation, resulting in the formation of larger agglomerated grains. Additionally, the sheet-like structures of the polymer (PANI) experience damage and transform into cuboid-like structures. Atomic force microscopy confirmed an increase in surface roughness. FTIR spectroscopy detected the presence of V=O and C-H aromatic bending vibrations in PANI. The decrease in wavenumbers of the V-O-V asymmetric stretching vibration in the spectra of irradiated samples was linked to a rise in molecular mass. Following irradiation, both the Pre-irradiated samples and hybrid composites displayed a redshift in their band gaps, suggesting alterations in the band structure for optoelectronic and sensor devices for industrial applications (SDG-9).","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"87 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SHI irradiation molecular and microstructural changes in [formula omitted] due to SHI irradiation\",\"authors\":\"Ashish K. Kumawat, Ambuj Mishra, Indra Sulania, Satyapal S. Rathore, Rashi Nathawat\",\"doi\":\"10.1016/j.radphyschem.2025.113079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Swift heavy ion beam irradiation is a highly efficient method for introducing defects into a material system, thereby facilitating functional property modification. In this study, <mml:math altimg=\\\"si8.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>P</mml:mi><mml:mi>A</mml:mi><mml:mi>N</mml:mi><mml:mi>I</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msub><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">−</mml:mo><mml:msub><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>7</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> polyaniline-vanadium pentoxide composites were synthesized via a hydrothermal method. They Subsequently underwent irradiation with <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>N</mml:mi><mml:msup><mml:mrow><mml:mi>i</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>11</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> ions at a fluence of <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>2</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>11</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><mml:math altimg=\\\"si4.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>i</mml:mi><mml:mi>o</mml:mi><mml:mi>n</mml:mi><mml:mi>s</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\\\"normal\\\">cm</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>, having energy of 150 MeV. Advanced characterization techniques were then employed to analyze the structural, morphological, electronic, and optical properties of both the Pre-irradiated and post-irradiated samples. In XRD, the Bragg reflections observed were attributed to two distinct phases present in the material, indicating that the sample was pure and composed solely of the intended constituents without any impurity. The HRTEM images revealed an interatomic distance of 0.35 nm, corresponding to the (0-13) lattice plane of orthorhombic <mml:math altimg=\\\"si5.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. Additionally, the SAED demonstrates a diffraction pattern characteristic of polycrystalline <mml:math altimg=\\\"si5.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. FESEM analysis demonstrated significant changes in microstructure due to the heating effects of irradiation. Post irradiation, the microstructure of the material undergoes fragmentation, resulting in the formation of larger agglomerated grains. Additionally, the sheet-like structures of the polymer (PANI) experience damage and transform into cuboid-like structures. Atomic force microscopy confirmed an increase in surface roughness. FTIR spectroscopy detected the presence of V=O and C-H aromatic bending vibrations in PANI. The decrease in wavenumbers of the V-O-V asymmetric stretching vibration in the spectra of irradiated samples was linked to a rise in molecular mass. Following irradiation, both the Pre-irradiated samples and hybrid composites displayed a redshift in their band gaps, suggesting alterations in the band structure for optoelectronic and sensor devices for industrial applications (SDG-9).\",\"PeriodicalId\":20861,\"journal\":{\"name\":\"Radiation Physics and Chemistry\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Physics and Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.radphyschem.2025.113079\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.radphyschem.2025.113079","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
SHI irradiation molecular and microstructural changes in [formula omitted] due to SHI irradiation
Swift heavy ion beam irradiation is a highly efficient method for introducing defects into a material system, thereby facilitating functional property modification. In this study, (PANI)2.5−(V4O7)7.5 polyaniline-vanadium pentoxide composites were synthesized via a hydrothermal method. They Subsequently underwent irradiation with Ni+11 ions at a fluence of 2.5×1011ions/cm2, having energy of 150 MeV. Advanced characterization techniques were then employed to analyze the structural, morphological, electronic, and optical properties of both the Pre-irradiated and post-irradiated samples. In XRD, the Bragg reflections observed were attributed to two distinct phases present in the material, indicating that the sample was pure and composed solely of the intended constituents without any impurity. The HRTEM images revealed an interatomic distance of 0.35 nm, corresponding to the (0-13) lattice plane of orthorhombic V4O7. Additionally, the SAED demonstrates a diffraction pattern characteristic of polycrystalline V4O7. FESEM analysis demonstrated significant changes in microstructure due to the heating effects of irradiation. Post irradiation, the microstructure of the material undergoes fragmentation, resulting in the formation of larger agglomerated grains. Additionally, the sheet-like structures of the polymer (PANI) experience damage and transform into cuboid-like structures. Atomic force microscopy confirmed an increase in surface roughness. FTIR spectroscopy detected the presence of V=O and C-H aromatic bending vibrations in PANI. The decrease in wavenumbers of the V-O-V asymmetric stretching vibration in the spectra of irradiated samples was linked to a rise in molecular mass. Following irradiation, both the Pre-irradiated samples and hybrid composites displayed a redshift in their band gaps, suggesting alterations in the band structure for optoelectronic and sensor devices for industrial applications (SDG-9).
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.