Bharagav Urupalli, Dong‐Seog Kim, Gi‐Seung Shin, Geun‐Jae Oh, Tuong Van Tran, Ji‐Wook Yoon, Yeon‐Tae Yu
{"title":"推进Z - Scheme异质结的战略性核壳集成:界面工程ZnIn2S4/Ag2WO4@Ag三元结构,用于增强可见光驱动的光催化H2生产和污染物降解","authors":"Bharagav Urupalli, Dong‐Seog Kim, Gi‐Seung Shin, Geun‐Jae Oh, Tuong Van Tran, Ji‐Wook Yoon, Yeon‐Tae Yu","doi":"10.1002/smll.202501833","DOIUrl":null,"url":null,"abstract":"The spatial inhomogeneity of interfacial modifications, despite conventional approaches like co‐catalyst deposition and dopant incorporation, presents a critical bottleneck in achieving optimal charge carrier dynamics and sustained photocatalytic performance at semiconductor heterojunctions. To address this challenge, this study introduces a novel approach by encapsulating the wide‐bandgap semiconductor Ag<jats:sub>2</jats:sub>WO<jats:sub>4</jats:sub> (AWO) in a particulate shell of plasmonic hot spots (metallic Ag), forming a well‐defined interface that facilitates consistent charge transfer and enhances photocatalytic efficiency. The engineered Ag<jats:sub>2</jats:sub>WO<jats:sub>4</jats:sub>@Ag (AWO@Ag) is strategically integrated with ZnIn<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> (ZIS) nanosheets to design core–shell integrated Z‐scheme heterojunction. The optimized integration of AWO@Ag (12.5%) over ZIS nanosheets demonstrates a remarkable hydrogen generation performance, achieving 3142 µmol h<jats:sup>−1</jats:sup>g<jats:sup>−1</jats:sup>, surpassing the performance of pure ZnIn<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> (1311 µmol h<jats:sup>−1</jats:sup>g<jats:sup>−1</jats:sup>). Through rational interface design with strong redox abilities, the system achieves an impressive methyl orange photodegradation efficiency of 97.16% within 60 min. Additionally, it exhibits photoanodic currents of 3.98 mA cm<jats:sup>−2</jats:sup> at 2.2 V versus RHE in a neutral electrolytic medium, demonstrating enhanced water oxidation capability facilitated by AWO@Ag integration. The system's exceptional performance across hydrogen generation, dye degradation, and water oxidation, validates that this advanced structural design enables stable and sustained photocatalytic performance through its multifunctional properties.","PeriodicalId":228,"journal":{"name":"Small","volume":"13 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic Core‐Shell Integration for Advancing Z‐Scheme Heterojunctions: Interface‐Engineered ZnIn2S4/Ag2WO4@Ag Ternary Architecture for Enhanced Visible‐Light‐Driven Photocatalytic H2 Production and Pollutant Degradation\",\"authors\":\"Bharagav Urupalli, Dong‐Seog Kim, Gi‐Seung Shin, Geun‐Jae Oh, Tuong Van Tran, Ji‐Wook Yoon, Yeon‐Tae Yu\",\"doi\":\"10.1002/smll.202501833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spatial inhomogeneity of interfacial modifications, despite conventional approaches like co‐catalyst deposition and dopant incorporation, presents a critical bottleneck in achieving optimal charge carrier dynamics and sustained photocatalytic performance at semiconductor heterojunctions. To address this challenge, this study introduces a novel approach by encapsulating the wide‐bandgap semiconductor Ag<jats:sub>2</jats:sub>WO<jats:sub>4</jats:sub> (AWO) in a particulate shell of plasmonic hot spots (metallic Ag), forming a well‐defined interface that facilitates consistent charge transfer and enhances photocatalytic efficiency. The engineered Ag<jats:sub>2</jats:sub>WO<jats:sub>4</jats:sub>@Ag (AWO@Ag) is strategically integrated with ZnIn<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> (ZIS) nanosheets to design core–shell integrated Z‐scheme heterojunction. The optimized integration of AWO@Ag (12.5%) over ZIS nanosheets demonstrates a remarkable hydrogen generation performance, achieving 3142 µmol h<jats:sup>−1</jats:sup>g<jats:sup>−1</jats:sup>, surpassing the performance of pure ZnIn<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> (1311 µmol h<jats:sup>−1</jats:sup>g<jats:sup>−1</jats:sup>). Through rational interface design with strong redox abilities, the system achieves an impressive methyl orange photodegradation efficiency of 97.16% within 60 min. Additionally, it exhibits photoanodic currents of 3.98 mA cm<jats:sup>−2</jats:sup> at 2.2 V versus RHE in a neutral electrolytic medium, demonstrating enhanced water oxidation capability facilitated by AWO@Ag integration. The system's exceptional performance across hydrogen generation, dye degradation, and water oxidation, validates that this advanced structural design enables stable and sustained photocatalytic performance through its multifunctional properties.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202501833\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501833","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
尽管采用了诸如共催化剂沉积和掺杂等传统方法,但界面修饰的空间不均匀性是实现半导体异质结最佳载流子动力学和持续光催化性能的关键瓶颈。为了解决这一挑战,本研究引入了一种新方法,将宽带隙半导体Ag2WO4 (AWO)封装在等离子体热点(金属Ag)的颗粒壳中,形成一个定义良好的界面,促进一致的电荷转移并提高光催化效率。设计的Ag2WO4@Ag (AWO@Ag)策略性地与ZnIn2S4 (ZIS)纳米片集成,以设计核壳集成的Z - scheme异质结。优化后的AWO@Ag(12.5%)在ZIS纳米片上的集成表现出了显著的产氢性能,达到了3142µmol h−1g−1,超过了纯ZnIn2S4(1311µmol h−1g−1)。通过合理的界面设计和强大的氧化还原能力,该系统在60分钟内实现了97.16%的甲基橙光降解效率。此外,在中性电解介质中,与RHE相比,该系统在2.2 V下具有3.98 mA cm - 2的光阳极电流,通过AWO@Ag集成增强了水氧化能力。该系统在氢气生成、染料降解和水氧化方面的卓越性能,验证了这种先进的结构设计通过其多功能特性实现了稳定和持续的光催化性能。
Strategic Core‐Shell Integration for Advancing Z‐Scheme Heterojunctions: Interface‐Engineered ZnIn2S4/Ag2WO4@Ag Ternary Architecture for Enhanced Visible‐Light‐Driven Photocatalytic H2 Production and Pollutant Degradation
The spatial inhomogeneity of interfacial modifications, despite conventional approaches like co‐catalyst deposition and dopant incorporation, presents a critical bottleneck in achieving optimal charge carrier dynamics and sustained photocatalytic performance at semiconductor heterojunctions. To address this challenge, this study introduces a novel approach by encapsulating the wide‐bandgap semiconductor Ag2WO4 (AWO) in a particulate shell of plasmonic hot spots (metallic Ag), forming a well‐defined interface that facilitates consistent charge transfer and enhances photocatalytic efficiency. The engineered Ag2WO4@Ag (AWO@Ag) is strategically integrated with ZnIn2S4 (ZIS) nanosheets to design core–shell integrated Z‐scheme heterojunction. The optimized integration of AWO@Ag (12.5%) over ZIS nanosheets demonstrates a remarkable hydrogen generation performance, achieving 3142 µmol h−1g−1, surpassing the performance of pure ZnIn2S4 (1311 µmol h−1g−1). Through rational interface design with strong redox abilities, the system achieves an impressive methyl orange photodegradation efficiency of 97.16% within 60 min. Additionally, it exhibits photoanodic currents of 3.98 mA cm−2 at 2.2 V versus RHE in a neutral electrolytic medium, demonstrating enhanced water oxidation capability facilitated by AWO@Ag integration. The system's exceptional performance across hydrogen generation, dye degradation, and water oxidation, validates that this advanced structural design enables stable and sustained photocatalytic performance through its multifunctional properties.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.