多溶剂协同策略解锁锌阳极的抗腐蚀和高可逆性:为坚固和温度弹性锌碘电池铺平道路

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenjuan Zhang, Yangyang Liu, Xiansheng Luo, Rui Wang, Kuan Zhou, Libei Yuan, Fujun Li, Hongbao Li, Longhai Zhang, Chaofeng Zhang
{"title":"多溶剂协同策略解锁锌阳极的抗腐蚀和高可逆性:为坚固和温度弹性锌碘电池铺平道路","authors":"Wenjuan Zhang, Yangyang Liu, Xiansheng Luo, Rui Wang, Kuan Zhou, Libei Yuan, Fujun Li, Hongbao Li, Longhai Zhang, Chaofeng Zhang","doi":"10.1002/adfm.202512633","DOIUrl":null,"url":null,"abstract":"Aqueous zinc–iodine (Zn||I<jats:sub>2</jats:sub>) batteries exhibit significant potential for large‐scale energy storage, but their reversibility and cycle stability remain considerable challenges due to the severe side reactions on Zn anode and the shuttle effects of polyiodide ions. Here, a ternary co‐solvents electrolyte, including diethyl carbonate, ethyl acetate, and H<jats:sub>2</jats:sub>O, is developed to effectively address the above issues. Specifically, the multi‐solvents cooperatively reconstruct the solvation structure of Zn<jats:sup>2+</jats:sup> and disrupt the strong bonding between H<jats:sub>2</jats:sub>O, markedly suppressing the water‐induced parasitic reactions and reducing the freezing point of the electrolyte. Meanwhile, the reduced H<jats:sub>2</jats:sub>O content in the hybrid electrolyte significantly inhibits the solubility of iodine and thus impedes polyiodide shuttling. Furthermore, theoretical simulations combined with <jats:italic>operando</jats:italic> electrochemical quartz crystal microbalance with dissipation monitoring (EQCM‐D) and X‐ray photoelectron spectroscopy reveal that the OTf<jats:sup>−</jats:sup> anions will be profoundly reduced to produce a F‐rich inorganic–organic solid electrolyte interphase layer (SEI) on the Zn surface under the synergistic effect of the solvent molecules, effectively suppressing the formation of Zn dendrites and anode corrosion caused by active H<jats:sub>2</jats:sub>O and polyiodide ions. Consequently, the Zn||I<jats:sub>2</jats:sub> batteries demonstrate stable operational performance across an extended temperature range from −30 to 50 °C, achieving a maximum lifespan of 20 000 cycles.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"7 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi‐Solvent Synergy Strategy Unlocks Anti‐Corrosion and High Reversibility of Zinc Anodes: Paving the Way for Robust and Temperature‐Resilient Zinc‐Iodine Batteries\",\"authors\":\"Wenjuan Zhang, Yangyang Liu, Xiansheng Luo, Rui Wang, Kuan Zhou, Libei Yuan, Fujun Li, Hongbao Li, Longhai Zhang, Chaofeng Zhang\",\"doi\":\"10.1002/adfm.202512633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous zinc–iodine (Zn||I<jats:sub>2</jats:sub>) batteries exhibit significant potential for large‐scale energy storage, but their reversibility and cycle stability remain considerable challenges due to the severe side reactions on Zn anode and the shuttle effects of polyiodide ions. Here, a ternary co‐solvents electrolyte, including diethyl carbonate, ethyl acetate, and H<jats:sub>2</jats:sub>O, is developed to effectively address the above issues. Specifically, the multi‐solvents cooperatively reconstruct the solvation structure of Zn<jats:sup>2+</jats:sup> and disrupt the strong bonding between H<jats:sub>2</jats:sub>O, markedly suppressing the water‐induced parasitic reactions and reducing the freezing point of the electrolyte. Meanwhile, the reduced H<jats:sub>2</jats:sub>O content in the hybrid electrolyte significantly inhibits the solubility of iodine and thus impedes polyiodide shuttling. Furthermore, theoretical simulations combined with <jats:italic>operando</jats:italic> electrochemical quartz crystal microbalance with dissipation monitoring (EQCM‐D) and X‐ray photoelectron spectroscopy reveal that the OTf<jats:sup>−</jats:sup> anions will be profoundly reduced to produce a F‐rich inorganic–organic solid electrolyte interphase layer (SEI) on the Zn surface under the synergistic effect of the solvent molecules, effectively suppressing the formation of Zn dendrites and anode corrosion caused by active H<jats:sub>2</jats:sub>O and polyiodide ions. Consequently, the Zn||I<jats:sub>2</jats:sub> batteries demonstrate stable operational performance across an extended temperature range from −30 to 50 °C, achieving a maximum lifespan of 20 000 cycles.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202512633\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202512633","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水相锌碘电池(Zn||I2)在大规模储能方面表现出巨大的潜力,但由于锌阳极上严重的副反应和多碘离子的穿梭效应,其可逆性和循环稳定性仍然面临相当大的挑战。本文开发了一种三元共溶剂电解质,包括碳酸二乙酯、乙酸乙酯和H2O,以有效解决上述问题。具体来说,多溶剂共同重建了Zn2+的溶剂化结构,破坏了H2O之间的强键,显著抑制了水诱导的寄生反应,降低了电解质的冰点。同时,杂化电解质中H2O含量的降低显著抑制了碘的溶解度,从而阻碍了多碘化物的穿梭。此外,结合电化学石英晶体微平衡耗散监测(EQCM - D)和X射线光电子能谱的理论模拟表明,在溶剂分子的协同作用下,OTf -阴离子将被深度还原,在Zn表面形成富F的无机-有机固体电解质间相层(SEI)。有效抑制Zn枝晶的形成和活性H2O和多碘离子引起的阳极腐蚀。因此,锌||I2电池在−30至50°C的扩展温度范围内表现出稳定的工作性能,实现了20,000次循环的最大寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi‐Solvent Synergy Strategy Unlocks Anti‐Corrosion and High Reversibility of Zinc Anodes: Paving the Way for Robust and Temperature‐Resilient Zinc‐Iodine Batteries
Aqueous zinc–iodine (Zn||I2) batteries exhibit significant potential for large‐scale energy storage, but their reversibility and cycle stability remain considerable challenges due to the severe side reactions on Zn anode and the shuttle effects of polyiodide ions. Here, a ternary co‐solvents electrolyte, including diethyl carbonate, ethyl acetate, and H2O, is developed to effectively address the above issues. Specifically, the multi‐solvents cooperatively reconstruct the solvation structure of Zn2+ and disrupt the strong bonding between H2O, markedly suppressing the water‐induced parasitic reactions and reducing the freezing point of the electrolyte. Meanwhile, the reduced H2O content in the hybrid electrolyte significantly inhibits the solubility of iodine and thus impedes polyiodide shuttling. Furthermore, theoretical simulations combined with operando electrochemical quartz crystal microbalance with dissipation monitoring (EQCM‐D) and X‐ray photoelectron spectroscopy reveal that the OTf anions will be profoundly reduced to produce a F‐rich inorganic–organic solid electrolyte interphase layer (SEI) on the Zn surface under the synergistic effect of the solvent molecules, effectively suppressing the formation of Zn dendrites and anode corrosion caused by active H2O and polyiodide ions. Consequently, the Zn||I2 batteries demonstrate stable operational performance across an extended temperature range from −30 to 50 °C, achieving a maximum lifespan of 20 000 cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信