Jinhua Zhao, Aiping Tong, Jing Liu, Mingxia Xu, Peng Mi
{"title":"肿瘤靶向纳米载体通过STING激活和抑制免疫逃避放大冷肿瘤的免疫治疗","authors":"Jinhua Zhao, Aiping Tong, Jing Liu, Mingxia Xu, Peng Mi","doi":"","DOIUrl":null,"url":null,"abstract":"<div >The low immunogenicity and immune escape are bottlenecks for effective tumor immunotherapy. Here, we synthesized multifunctional polymers comprising a photosensitizer and cationic and thiol derivates and engineered a galactose-installed stimulator of interferon genes (STING) agonist and programmed death ligand 1 (PD-L1) small interfering RNA (siPDL1)–encapsulated nanocarriers (cGAMP-siPDL1@GalNPs) for synergistic immunotherapy of low immunogenic tumors through stimulating robust immune responses. cGAMP-siPDL1@GalNPs efficiently delivered the drugs into cancer cells by targeting the galactose receptors to trigger photo-/redox-/pH-activated drug release. cGAMP-siPDL1@GalNPs stimulated robust antitumor immunity via STING activation and immunogenic cell death (ICD) and inhibited immune escape via knockdown of PD-L1 expression in tumors, which synergistically regulated the immune-suppressive tumor microenvironment. Upon laser irradiation, the nanocarriers efficiently eradicated primary melanoma and orthotopic triple-negative breast tumors and induced ICD effects, which synergically inhibited the distant tumor and spontaneous lung metastasis with improved survival rates. This study presents a strategy for developing nanocarriers to activate antitumor immunity and regulate immune invasion for effective immunotherapy.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 26","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr1728","citationCount":"0","resultStr":"{\"title\":\"Tumor-targeting nanocarriers amplified immunotherapy of cold tumors by STING activation and inhibiting immune evasion\",\"authors\":\"Jinhua Zhao, Aiping Tong, Jing Liu, Mingxia Xu, Peng Mi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The low immunogenicity and immune escape are bottlenecks for effective tumor immunotherapy. Here, we synthesized multifunctional polymers comprising a photosensitizer and cationic and thiol derivates and engineered a galactose-installed stimulator of interferon genes (STING) agonist and programmed death ligand 1 (PD-L1) small interfering RNA (siPDL1)–encapsulated nanocarriers (cGAMP-siPDL1@GalNPs) for synergistic immunotherapy of low immunogenic tumors through stimulating robust immune responses. cGAMP-siPDL1@GalNPs efficiently delivered the drugs into cancer cells by targeting the galactose receptors to trigger photo-/redox-/pH-activated drug release. cGAMP-siPDL1@GalNPs stimulated robust antitumor immunity via STING activation and immunogenic cell death (ICD) and inhibited immune escape via knockdown of PD-L1 expression in tumors, which synergistically regulated the immune-suppressive tumor microenvironment. Upon laser irradiation, the nanocarriers efficiently eradicated primary melanoma and orthotopic triple-negative breast tumors and induced ICD effects, which synergically inhibited the distant tumor and spontaneous lung metastasis with improved survival rates. This study presents a strategy for developing nanocarriers to activate antitumor immunity and regulate immune invasion for effective immunotherapy.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 26\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adr1728\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adr1728\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr1728","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Tumor-targeting nanocarriers amplified immunotherapy of cold tumors by STING activation and inhibiting immune evasion
The low immunogenicity and immune escape are bottlenecks for effective tumor immunotherapy. Here, we synthesized multifunctional polymers comprising a photosensitizer and cationic and thiol derivates and engineered a galactose-installed stimulator of interferon genes (STING) agonist and programmed death ligand 1 (PD-L1) small interfering RNA (siPDL1)–encapsulated nanocarriers (cGAMP-siPDL1@GalNPs) for synergistic immunotherapy of low immunogenic tumors through stimulating robust immune responses. cGAMP-siPDL1@GalNPs efficiently delivered the drugs into cancer cells by targeting the galactose receptors to trigger photo-/redox-/pH-activated drug release. cGAMP-siPDL1@GalNPs stimulated robust antitumor immunity via STING activation and immunogenic cell death (ICD) and inhibited immune escape via knockdown of PD-L1 expression in tumors, which synergistically regulated the immune-suppressive tumor microenvironment. Upon laser irradiation, the nanocarriers efficiently eradicated primary melanoma and orthotopic triple-negative breast tumors and induced ICD effects, which synergically inhibited the distant tumor and spontaneous lung metastasis with improved survival rates. This study presents a strategy for developing nanocarriers to activate antitumor immunity and regulate immune invasion for effective immunotherapy.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.