Chuan Wei Zhang, Xing Peng Hao, Weifeng Zou, Zhixin Zhu, Jia Yu Hu, Li Xin Hou, Si Rui Xu, Zhen Luo, Yichen Yan, Andrea Sarabia, Andrea Litwak, Shili Xu, Zhi Jian Wang, Ximin He, Qiang Zheng, Zi Liang Wu
{"title":"具有可编程磁取向的超分子水凝胶致动器","authors":"Chuan Wei Zhang, Xing Peng Hao, Weifeng Zou, Zhixin Zhu, Jia Yu Hu, Li Xin Hou, Si Rui Xu, Zhen Luo, Yichen Yan, Andrea Sarabia, Andrea Litwak, Shili Xu, Zhi Jian Wang, Ximin He, Qiang Zheng, Zi Liang Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Magnetic soft actuators with reprogrammable deformations have gained substantial attention due to their adaptability for various applications. However, achieving precise and local reorientation of magnetic particles remains challenging. Here, we present a strategy to locally tailor the viscoelasticity of magnetic supramolecular hydrogels, facilitate reorientation of the embedded magnetic particles, and enable reprogrammable magnetoactuated deformation and locomotion of the composite gels. The magnetic hydrogels are facilely prepared by mixing neodymium-iron-boron particles with an aqueous poly(acrylic acid–<i>co</i>–acrylamide) solution, which spontaneously forms supramolecular network with carboxylic–ferric ion coordinates as physical cross-links. This network enables dynamic control of viscoelasticity by localized laser heating, which reduces the pinning force of gel matrix and allows for reorientation of magnetic particles under a modest magnetic field. We demonstrate that the same hydrogel sheet can be reprogrammed to exhibit various complex deformations and locomotion. This versatile approach to developing magnetic hydrogels with adaptive responses offers exciting potential for soft robotics and biomedical devices.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 26","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw0500","citationCount":"0","resultStr":"{\"title\":\"Supramolecular hydrogel actuators with reprogrammable magnetic orientation by locally mediated viscoelasticity and pinning force\",\"authors\":\"Chuan Wei Zhang, Xing Peng Hao, Weifeng Zou, Zhixin Zhu, Jia Yu Hu, Li Xin Hou, Si Rui Xu, Zhen Luo, Yichen Yan, Andrea Sarabia, Andrea Litwak, Shili Xu, Zhi Jian Wang, Ximin He, Qiang Zheng, Zi Liang Wu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Magnetic soft actuators with reprogrammable deformations have gained substantial attention due to their adaptability for various applications. However, achieving precise and local reorientation of magnetic particles remains challenging. Here, we present a strategy to locally tailor the viscoelasticity of magnetic supramolecular hydrogels, facilitate reorientation of the embedded magnetic particles, and enable reprogrammable magnetoactuated deformation and locomotion of the composite gels. The magnetic hydrogels are facilely prepared by mixing neodymium-iron-boron particles with an aqueous poly(acrylic acid–<i>co</i>–acrylamide) solution, which spontaneously forms supramolecular network with carboxylic–ferric ion coordinates as physical cross-links. This network enables dynamic control of viscoelasticity by localized laser heating, which reduces the pinning force of gel matrix and allows for reorientation of magnetic particles under a modest magnetic field. We demonstrate that the same hydrogel sheet can be reprogrammed to exhibit various complex deformations and locomotion. This versatile approach to developing magnetic hydrogels with adaptive responses offers exciting potential for soft robotics and biomedical devices.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 26\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw0500\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw0500\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw0500","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Supramolecular hydrogel actuators with reprogrammable magnetic orientation by locally mediated viscoelasticity and pinning force
Magnetic soft actuators with reprogrammable deformations have gained substantial attention due to their adaptability for various applications. However, achieving precise and local reorientation of magnetic particles remains challenging. Here, we present a strategy to locally tailor the viscoelasticity of magnetic supramolecular hydrogels, facilitate reorientation of the embedded magnetic particles, and enable reprogrammable magnetoactuated deformation and locomotion of the composite gels. The magnetic hydrogels are facilely prepared by mixing neodymium-iron-boron particles with an aqueous poly(acrylic acid–co–acrylamide) solution, which spontaneously forms supramolecular network with carboxylic–ferric ion coordinates as physical cross-links. This network enables dynamic control of viscoelasticity by localized laser heating, which reduces the pinning force of gel matrix and allows for reorientation of magnetic particles under a modest magnetic field. We demonstrate that the same hydrogel sheet can be reprogrammed to exhibit various complex deformations and locomotion. This versatile approach to developing magnetic hydrogels with adaptive responses offers exciting potential for soft robotics and biomedical devices.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.