Ene Awodi, Turup Pandurangan Mohan, Kanny Krishnan
{"title":"纤维素填充羟基磷灰石生物复合膜的制备与表征","authors":"Ene Awodi, Turup Pandurangan Mohan, Kanny Krishnan","doi":"10.1002/bip.70038","DOIUrl":null,"url":null,"abstract":"<p>The packaging industry remains largely dominated by non-degradable synthetic materials, raising environmental concerns and prompting increased interest in sustainable alternatives. As a result, biopolymers such as starch and cellulose have gained considerable attention. The present study investigates the thermal, mechanical, and hydrophilic properties of regenerated cellulose film as a potential eco-friendly packaging material. The biopolymers utilized in this study were derived from secondary biowaste sources. The presence of transmittance bands corresponding to calcium and phosphate groups in the FTIR spectra, as well as the results of elemental composition analysis (EDX), confirmed the elemental makeup of the particles. FTIR analysis further revealed significant interactive bonding between the hydroxyl groups in the cellulose matrix and the calcium components of the FSHAp fillers. These interactions resulted in shifts in the IR transmittance bands in the biopolymer composite films. The incorporation of FSHAp fillers into the cellulose matrix enhanced the thermal stability of the cellulose films, with an observed improvement of 24%. At a filler concentration of 3 wt%, the char residue was 74.89% higher than that of the unfilled cellulose film. Additionally, the cellulose film containing 2 wt% FSHAp exhibited a tensile strength of 23 MPa, representing a 30% increase compared to the unfilled sample. This study introduces a novel biopolymer composite film as a promising sustainable and eco-friendly alternative to conventional plastic-based packaging materials. Furthermore, it supports the principles of the circular economy by offering a viable solution for managing abundantly available biomass waste.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.70038","citationCount":"0","resultStr":"{\"title\":\"Preparation and Characterization of Cellulose Filled With Hydroxyapatite Biocomposite Film\",\"authors\":\"Ene Awodi, Turup Pandurangan Mohan, Kanny Krishnan\",\"doi\":\"10.1002/bip.70038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The packaging industry remains largely dominated by non-degradable synthetic materials, raising environmental concerns and prompting increased interest in sustainable alternatives. As a result, biopolymers such as starch and cellulose have gained considerable attention. The present study investigates the thermal, mechanical, and hydrophilic properties of regenerated cellulose film as a potential eco-friendly packaging material. The biopolymers utilized in this study were derived from secondary biowaste sources. The presence of transmittance bands corresponding to calcium and phosphate groups in the FTIR spectra, as well as the results of elemental composition analysis (EDX), confirmed the elemental makeup of the particles. FTIR analysis further revealed significant interactive bonding between the hydroxyl groups in the cellulose matrix and the calcium components of the FSHAp fillers. These interactions resulted in shifts in the IR transmittance bands in the biopolymer composite films. The incorporation of FSHAp fillers into the cellulose matrix enhanced the thermal stability of the cellulose films, with an observed improvement of 24%. At a filler concentration of 3 wt%, the char residue was 74.89% higher than that of the unfilled cellulose film. Additionally, the cellulose film containing 2 wt% FSHAp exhibited a tensile strength of 23 MPa, representing a 30% increase compared to the unfilled sample. This study introduces a novel biopolymer composite film as a promising sustainable and eco-friendly alternative to conventional plastic-based packaging materials. Furthermore, it supports the principles of the circular economy by offering a viable solution for managing abundantly available biomass waste.</p>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":\"116 4\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.70038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.70038\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Preparation and Characterization of Cellulose Filled With Hydroxyapatite Biocomposite Film
The packaging industry remains largely dominated by non-degradable synthetic materials, raising environmental concerns and prompting increased interest in sustainable alternatives. As a result, biopolymers such as starch and cellulose have gained considerable attention. The present study investigates the thermal, mechanical, and hydrophilic properties of regenerated cellulose film as a potential eco-friendly packaging material. The biopolymers utilized in this study were derived from secondary biowaste sources. The presence of transmittance bands corresponding to calcium and phosphate groups in the FTIR spectra, as well as the results of elemental composition analysis (EDX), confirmed the elemental makeup of the particles. FTIR analysis further revealed significant interactive bonding between the hydroxyl groups in the cellulose matrix and the calcium components of the FSHAp fillers. These interactions resulted in shifts in the IR transmittance bands in the biopolymer composite films. The incorporation of FSHAp fillers into the cellulose matrix enhanced the thermal stability of the cellulose films, with an observed improvement of 24%. At a filler concentration of 3 wt%, the char residue was 74.89% higher than that of the unfilled cellulose film. Additionally, the cellulose film containing 2 wt% FSHAp exhibited a tensile strength of 23 MPa, representing a 30% increase compared to the unfilled sample. This study introduces a novel biopolymer composite film as a promising sustainable and eco-friendly alternative to conventional plastic-based packaging materials. Furthermore, it supports the principles of the circular economy by offering a viable solution for managing abundantly available biomass waste.
期刊介绍:
Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.