{"title":"元图学习的拓扑感知张量分解","authors":"Hansi Yang, Quanming Yao","doi":"10.1049/cit2.12404","DOIUrl":null,"url":null,"abstract":"<p>Heterogeneous graphs generally refer to graphs with different types of nodes and edges. A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs, which can be seen as a special kind of directed acyclic graph with same node and edge types as the heterogeneous graph. However, how to design proper meta-graphs is challenging. Recently, there have been many works on learning suitable meta-graphs from a heterogeneous graph. Existing methods generally introduce continuous weights for edges that are independent of each other, which ignores the topological structures of meta-graphs and can be ineffective. To address this issue, the authors propose a new viewpoint from tensor on learning meta-graphs. Such a viewpoint not only helps interpret the limitation of existing works by CANDECOMP/PARAFAC (CP) decomposition, but also inspires us to propose a topology-aware tensor decomposition, called <i>TENSUS</i>, that reflects the structure of DAGs. The proposed topology-aware tensor decomposition is easy to use and simple to implement, and it can be taken as a plug-in part to upgrade many existing works, including node classification and recommendation on heterogeneous graphs. Experimental results on different tasks demonstrate that the proposed method can significantly improve the state-of-the-arts for all these tasks.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"10 3","pages":"891-901"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12404","citationCount":"0","resultStr":"{\"title\":\"Topology-aware tensor decomposition for meta-graph learning\",\"authors\":\"Hansi Yang, Quanming Yao\",\"doi\":\"10.1049/cit2.12404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heterogeneous graphs generally refer to graphs with different types of nodes and edges. A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs, which can be seen as a special kind of directed acyclic graph with same node and edge types as the heterogeneous graph. However, how to design proper meta-graphs is challenging. Recently, there have been many works on learning suitable meta-graphs from a heterogeneous graph. Existing methods generally introduce continuous weights for edges that are independent of each other, which ignores the topological structures of meta-graphs and can be ineffective. To address this issue, the authors propose a new viewpoint from tensor on learning meta-graphs. Such a viewpoint not only helps interpret the limitation of existing works by CANDECOMP/PARAFAC (CP) decomposition, but also inspires us to propose a topology-aware tensor decomposition, called <i>TENSUS</i>, that reflects the structure of DAGs. The proposed topology-aware tensor decomposition is easy to use and simple to implement, and it can be taken as a plug-in part to upgrade many existing works, including node classification and recommendation on heterogeneous graphs. Experimental results on different tasks demonstrate that the proposed method can significantly improve the state-of-the-arts for all these tasks.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"10 3\",\"pages\":\"891-901\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12404\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12404\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12404","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Topology-aware tensor decomposition for meta-graph learning
Heterogeneous graphs generally refer to graphs with different types of nodes and edges. A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs, which can be seen as a special kind of directed acyclic graph with same node and edge types as the heterogeneous graph. However, how to design proper meta-graphs is challenging. Recently, there have been many works on learning suitable meta-graphs from a heterogeneous graph. Existing methods generally introduce continuous weights for edges that are independent of each other, which ignores the topological structures of meta-graphs and can be ineffective. To address this issue, the authors propose a new viewpoint from tensor on learning meta-graphs. Such a viewpoint not only helps interpret the limitation of existing works by CANDECOMP/PARAFAC (CP) decomposition, but also inspires us to propose a topology-aware tensor decomposition, called TENSUS, that reflects the structure of DAGs. The proposed topology-aware tensor decomposition is easy to use and simple to implement, and it can be taken as a plug-in part to upgrade many existing works, including node classification and recommendation on heterogeneous graphs. Experimental results on different tasks demonstrate that the proposed method can significantly improve the state-of-the-arts for all these tasks.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.