灾害管理中应急服务响应码有序文本分类的距离均方损失函数

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Eungyeol Lee, Sungwon Byon, Eui-Suk Jung, Eunjung Kwon, Hyunho Park
{"title":"灾害管理中应急服务响应码有序文本分类的距离均方损失函数","authors":"Eungyeol Lee,&nbsp;Sungwon Byon,&nbsp;Eui-Suk Jung,&nbsp;Eunjung Kwon,&nbsp;Hyunho Park","doi":"10.4218/etrij.2024-0478","DOIUrl":null,"url":null,"abstract":"<p>The National Fire Agency (NFA) and National Police Agency (NPA) have defined risk levels based on the severity of disasters. Risk-level data possess the characteristics of ordinal data such as NPA's Emergency Service Response Code (ESRC) data, which are classified based on their magnitudes (from C0 to C4). In this study, we propose a distance mean-square (DiMS) loss function to improve the accuracy of ordinal data classification. The DiMS loss function calculates loss values based on the distances between the predicted and true labels: value distances (commonly used in regression analysis for magnitude data) and probability distances (typically used in classification analysis). Therefore, the DiMS loss function contributes to improved accuracy when classifying ordinal data, such as ESRC. In addition, using the DiMS loss function, we achieved state-of-the-art performance in classifying the SST-5 data, which is a representative ordinal dataset. The DiMS loss function for ordinal classification enabled accurate risk recognition. Thus, accurate risk recognition using the DiMS loss function enhances disaster response.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 3","pages":"472-479"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0478","citationCount":"0","resultStr":"{\"title\":\"Distance mean-square loss function for ordinal text classification of emergency service response codes in disaster management\",\"authors\":\"Eungyeol Lee,&nbsp;Sungwon Byon,&nbsp;Eui-Suk Jung,&nbsp;Eunjung Kwon,&nbsp;Hyunho Park\",\"doi\":\"10.4218/etrij.2024-0478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The National Fire Agency (NFA) and National Police Agency (NPA) have defined risk levels based on the severity of disasters. Risk-level data possess the characteristics of ordinal data such as NPA's Emergency Service Response Code (ESRC) data, which are classified based on their magnitudes (from C0 to C4). In this study, we propose a distance mean-square (DiMS) loss function to improve the accuracy of ordinal data classification. The DiMS loss function calculates loss values based on the distances between the predicted and true labels: value distances (commonly used in regression analysis for magnitude data) and probability distances (typically used in classification analysis). Therefore, the DiMS loss function contributes to improved accuracy when classifying ordinal data, such as ESRC. In addition, using the DiMS loss function, we achieved state-of-the-art performance in classifying the SST-5 data, which is a representative ordinal dataset. The DiMS loss function for ordinal classification enabled accurate risk recognition. Thus, accurate risk recognition using the DiMS loss function enhances disaster response.</p>\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"47 3\",\"pages\":\"472-479\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0478\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2024-0478\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2024-0478","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

国家消防局(NFA)和国家警察厅(NPA)根据灾害的严重程度确定了风险等级。风险级别数据具有序数数据的特征,如NPA的紧急服务响应代码(ESRC)数据,这些数据根据其震级(从C0到C4)进行分类。在本研究中,我们提出了距离均方(DiMS)损失函数来提高有序数据分类的准确性。DiMS损失函数根据预测和真实标签之间的距离计算损失值:值距离(通常用于数量级数据的回归分析)和概率距离(通常用于分类分析)。因此,DiMS损失函数有助于提高对有序数据(如ESRC)分类的准确性。此外,使用DiMS损失函数,我们在SST-5数据分类方面取得了最先进的性能,这是一个具有代表性的有序数据集。DiMS损失函数用于有序分类,可以准确识别风险。因此,使用DiMS损失函数进行准确的风险识别可以增强灾害响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distance mean-square loss function for ordinal text classification of emergency service response codes in disaster management

Distance mean-square loss function for ordinal text classification of emergency service response codes in disaster management

The National Fire Agency (NFA) and National Police Agency (NPA) have defined risk levels based on the severity of disasters. Risk-level data possess the characteristics of ordinal data such as NPA's Emergency Service Response Code (ESRC) data, which are classified based on their magnitudes (from C0 to C4). In this study, we propose a distance mean-square (DiMS) loss function to improve the accuracy of ordinal data classification. The DiMS loss function calculates loss values based on the distances between the predicted and true labels: value distances (commonly used in regression analysis for magnitude data) and probability distances (typically used in classification analysis). Therefore, the DiMS loss function contributes to improved accuracy when classifying ordinal data, such as ESRC. In addition, using the DiMS loss function, we achieved state-of-the-art performance in classifying the SST-5 data, which is a representative ordinal dataset. The DiMS loss function for ordinal classification enabled accurate risk recognition. Thus, accurate risk recognition using the DiMS loss function enhances disaster response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信