优化电流密度的马尔可夫决策过程提高水电解制氢效率

IF 4.2 3区 工程技术 Q2 ELECTROCHEMISTRY
Purnami Purnami , Willy Satrio Nugroho , Wresti L. Anggayasti , Yepy Komaril Sofi'i , I.N.G. Wardana
{"title":"优化电流密度的马尔可夫决策过程提高水电解制氢效率","authors":"Purnami Purnami ,&nbsp;Willy Satrio Nugroho ,&nbsp;Wresti L. Anggayasti ,&nbsp;Yepy Komaril Sofi'i ,&nbsp;I.N.G. Wardana","doi":"10.1016/j.elecom.2025.107987","DOIUrl":null,"url":null,"abstract":"<div><div>Maximizing the hydrogen evolution reaction (HER) remains challenging due to its nonlinear kinetics and complex charge interactions within the electric double layer (EDL). This study introduces an adaptive current density control approach using a Markov Decision Process (MDP) to enhance HER performance in alkaline water electrolysis. The MDP algorithm dynamically adjusts current release timings from three capacitors connected to the cathode based on feedback from hydrogen concentration levels. Results show that this fluctuating control strategy is more effective than static or linearly increasing methods, as it helps minimize overpotential, reduce heat buildup, and prevent hydrogen bubble accumulation. The MDP-optimized system achieved 7460 ppm in 60 min, outperforms the control condition (5802 ppm) produced under uncontrolled conditions. This work highlights a novel application of reinforcement learning to actively regulate electrochemical parameters, offering a promising mechanism for improving electrolyzer efficiency.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"177 ","pages":"Article 107987"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markov decision process for current density optimization to improve hydrogen production by water electrolysis\",\"authors\":\"Purnami Purnami ,&nbsp;Willy Satrio Nugroho ,&nbsp;Wresti L. Anggayasti ,&nbsp;Yepy Komaril Sofi'i ,&nbsp;I.N.G. Wardana\",\"doi\":\"10.1016/j.elecom.2025.107987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Maximizing the hydrogen evolution reaction (HER) remains challenging due to its nonlinear kinetics and complex charge interactions within the electric double layer (EDL). This study introduces an adaptive current density control approach using a Markov Decision Process (MDP) to enhance HER performance in alkaline water electrolysis. The MDP algorithm dynamically adjusts current release timings from three capacitors connected to the cathode based on feedback from hydrogen concentration levels. Results show that this fluctuating control strategy is more effective than static or linearly increasing methods, as it helps minimize overpotential, reduce heat buildup, and prevent hydrogen bubble accumulation. The MDP-optimized system achieved 7460 ppm in 60 min, outperforms the control condition (5802 ppm) produced under uncontrolled conditions. This work highlights a novel application of reinforcement learning to actively regulate electrochemical parameters, offering a promising mechanism for improving electrolyzer efficiency.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"177 \",\"pages\":\"Article 107987\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125001262\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001262","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

由于双电层(EDL)内的非线性动力学和复杂的电荷相互作用,使析氢反应(HER)最大化仍然是一个挑战。本研究提出一种利用马尔可夫决策过程(MDP)的自适应电流密度控制方法,以提高碱水电解中HER的性能。MDP算法根据氢浓度水平的反馈动态调整连接到阴极的三个电容器的电流释放时间。结果表明,这种波动控制策略比静态或线性增加的方法更有效,因为它有助于最小化过电位,减少热量积聚,并防止氢气泡积聚。优化后的系统在60分钟内达到7460 ppm,优于控制条件下的5802 ppm。这项工作强调了强化学习在主动调节电化学参数方面的新应用,为提高电解槽效率提供了一种有前途的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markov decision process for current density optimization to improve hydrogen production by water electrolysis
Maximizing the hydrogen evolution reaction (HER) remains challenging due to its nonlinear kinetics and complex charge interactions within the electric double layer (EDL). This study introduces an adaptive current density control approach using a Markov Decision Process (MDP) to enhance HER performance in alkaline water electrolysis. The MDP algorithm dynamically adjusts current release timings from three capacitors connected to the cathode based on feedback from hydrogen concentration levels. Results show that this fluctuating control strategy is more effective than static or linearly increasing methods, as it helps minimize overpotential, reduce heat buildup, and prevent hydrogen bubble accumulation. The MDP-optimized system achieved 7460 ppm in 60 min, outperforms the control condition (5802 ppm) produced under uncontrolled conditions. This work highlights a novel application of reinforcement learning to actively regulate electrochemical parameters, offering a promising mechanism for improving electrolyzer efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信