Carlos Leiva , Fátima Arroyo Torralvo , Yolanda Luna-Galiano , Alicia Ronda , David Muñoz de la Peña Sequedo
{"title":"在普通化学科目中使用DOCTUS制作问题册,实施连续评估系统","authors":"Carlos Leiva , Fátima Arroyo Torralvo , Yolanda Luna-Galiano , Alicia Ronda , David Muñoz de la Peña Sequedo","doi":"10.1016/j.ece.2025.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>A continuous evaluation system, integrating both formative and summative assessments has been implemented in a Chemistry subject with a high number of students. This system employs a personalized problem notebook developed through an application (DOCTUS), enabling the generation of individualized complex problem statements, easy correction, and multiple submission opportunities. This approach facilitates effective feedback, promotes autonomous and cooperative learning, accelerates the learning process, and enhances activity achievement levels. The experience has been carried out with a group of 91 students enrolled per year in the subject 'Chemistry' corresponding to the first academic year in degree of Chemical Engineering at the Higher Technical School of Engineering (University of Seville), although only 71 have participated in the activity. The platform used, which offers free access, was utilized to create personalized problem notebooks for each student. It assigns identical problems with personalized data and corrects submissions via Excel files in under 10 s. An improvement in the results has been observed; since the students have obtained a numerical grade for their work instantly after delivery of the problem, and they can redo it at a short time (hours), when the students still have the problem in their mind, where they want and with the material that they consider, and without a large increase in the amount of time spent by the teacher. The final qualification was on average 1.2 points higher than previous years. Compared to other subjects in the same academic year, Chemistry had a lower percentage of students who did not participated in the subject (22 % compared to 30–54 % in other subjects from the same course). The number of approved students has increased, reflected in the number of repeaters, which decreased in the next year from 42 % to 29 %.</div></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"53 ","pages":"Pages 1-7"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of a continuous assessment system through the creation of a problem book using DOCTUS in general chemistry subjects\",\"authors\":\"Carlos Leiva , Fátima Arroyo Torralvo , Yolanda Luna-Galiano , Alicia Ronda , David Muñoz de la Peña Sequedo\",\"doi\":\"10.1016/j.ece.2025.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A continuous evaluation system, integrating both formative and summative assessments has been implemented in a Chemistry subject with a high number of students. This system employs a personalized problem notebook developed through an application (DOCTUS), enabling the generation of individualized complex problem statements, easy correction, and multiple submission opportunities. This approach facilitates effective feedback, promotes autonomous and cooperative learning, accelerates the learning process, and enhances activity achievement levels. The experience has been carried out with a group of 91 students enrolled per year in the subject 'Chemistry' corresponding to the first academic year in degree of Chemical Engineering at the Higher Technical School of Engineering (University of Seville), although only 71 have participated in the activity. The platform used, which offers free access, was utilized to create personalized problem notebooks for each student. It assigns identical problems with personalized data and corrects submissions via Excel files in under 10 s. An improvement in the results has been observed; since the students have obtained a numerical grade for their work instantly after delivery of the problem, and they can redo it at a short time (hours), when the students still have the problem in their mind, where they want and with the material that they consider, and without a large increase in the amount of time spent by the teacher. The final qualification was on average 1.2 points higher than previous years. Compared to other subjects in the same academic year, Chemistry had a lower percentage of students who did not participated in the subject (22 % compared to 30–54 % in other subjects from the same course). The number of approved students has increased, reflected in the number of repeaters, which decreased in the next year from 42 % to 29 %.</div></div>\",\"PeriodicalId\":48509,\"journal\":{\"name\":\"Education for Chemical Engineers\",\"volume\":\"53 \",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Education for Chemical Engineers\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749772825000296\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772825000296","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Implementation of a continuous assessment system through the creation of a problem book using DOCTUS in general chemistry subjects
A continuous evaluation system, integrating both formative and summative assessments has been implemented in a Chemistry subject with a high number of students. This system employs a personalized problem notebook developed through an application (DOCTUS), enabling the generation of individualized complex problem statements, easy correction, and multiple submission opportunities. This approach facilitates effective feedback, promotes autonomous and cooperative learning, accelerates the learning process, and enhances activity achievement levels. The experience has been carried out with a group of 91 students enrolled per year in the subject 'Chemistry' corresponding to the first academic year in degree of Chemical Engineering at the Higher Technical School of Engineering (University of Seville), although only 71 have participated in the activity. The platform used, which offers free access, was utilized to create personalized problem notebooks for each student. It assigns identical problems with personalized data and corrects submissions via Excel files in under 10 s. An improvement in the results has been observed; since the students have obtained a numerical grade for their work instantly after delivery of the problem, and they can redo it at a short time (hours), when the students still have the problem in their mind, where they want and with the material that they consider, and without a large increase in the amount of time spent by the teacher. The final qualification was on average 1.2 points higher than previous years. Compared to other subjects in the same academic year, Chemistry had a lower percentage of students who did not participated in the subject (22 % compared to 30–54 % in other subjects from the same course). The number of approved students has increased, reflected in the number of repeaters, which decreased in the next year from 42 % to 29 %.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning