{"title":"具有空前可恢复性的功能梯度spinodal纳米结构陶瓷","authors":"Nishita Anandan, Colin G. Wilson, Lucas R. Meza","doi":"10.1016/j.ijmecsci.2025.110453","DOIUrl":null,"url":null,"abstract":"<div><div>A fundamental challenge for lightweight architected materials is their propensity for localized failure due to layered buckling, plastic shear-banding or fracture. Recent research efforts have used disorder to interrupt localization and enhance deformation, but most design strategies simply distribute the accumulation of damage, they do not prevent it from developing and propagating. This work explores how gradient architecture can be designed to hinder crack propagation and promote recoverability in nanostructured ceramic metamaterials. We experimentally and numerically investigated five different shell-based spinodal ceramic nanoarchitectures with 10-80 nm thick alumina films. These were fabricated using atomic layer deposition on sacrificial polymeric scaffolds written using two-photon lithography. All thin-walled (<span><math><mo><</mo></math></span>40 nm) architectures underwent shell buckling-dominated deformation and showed nearly full recovery after compression to <span><math><mo>∼</mo></math></span>45% strain, an expected result for this class of nanoarchitected materials. Thick-walled (<span><math><mo>></mo></math></span>40 nm) isotropic and anisotropic architectures experienced considerable local damage during compression and predictably showed permanent failure even at low strains. Unexpectedly, thick-walled conch-shell inspired gradient architectures showed localized damage but experienced a full recovery after compression to <span><math><mo>∼</mo></math></span>45% strain. This degree of recoverability has never been observed in this high density of a nanostructured ceramic, particularly one with visible local cracking during compression. This result stems from the length scale of the structural heterogeneity — the gradient layers were sufficiently small so as to inhibit the local damage development needed for crack propagation, thereby preventing catastrophic failure. Our findings have significant implications for how length scales and heterogeneity can be used to design failure-resistant materials from brittle constituents.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"301 ","pages":"Article 110453"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionally graded spinodal nanoarchitected ceramics with unprecedented recoverability\",\"authors\":\"Nishita Anandan, Colin G. Wilson, Lucas R. Meza\",\"doi\":\"10.1016/j.ijmecsci.2025.110453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A fundamental challenge for lightweight architected materials is their propensity for localized failure due to layered buckling, plastic shear-banding or fracture. Recent research efforts have used disorder to interrupt localization and enhance deformation, but most design strategies simply distribute the accumulation of damage, they do not prevent it from developing and propagating. This work explores how gradient architecture can be designed to hinder crack propagation and promote recoverability in nanostructured ceramic metamaterials. We experimentally and numerically investigated five different shell-based spinodal ceramic nanoarchitectures with 10-80 nm thick alumina films. These were fabricated using atomic layer deposition on sacrificial polymeric scaffolds written using two-photon lithography. All thin-walled (<span><math><mo><</mo></math></span>40 nm) architectures underwent shell buckling-dominated deformation and showed nearly full recovery after compression to <span><math><mo>∼</mo></math></span>45% strain, an expected result for this class of nanoarchitected materials. Thick-walled (<span><math><mo>></mo></math></span>40 nm) isotropic and anisotropic architectures experienced considerable local damage during compression and predictably showed permanent failure even at low strains. Unexpectedly, thick-walled conch-shell inspired gradient architectures showed localized damage but experienced a full recovery after compression to <span><math><mo>∼</mo></math></span>45% strain. This degree of recoverability has never been observed in this high density of a nanostructured ceramic, particularly one with visible local cracking during compression. This result stems from the length scale of the structural heterogeneity — the gradient layers were sufficiently small so as to inhibit the local damage development needed for crack propagation, thereby preventing catastrophic failure. Our findings have significant implications for how length scales and heterogeneity can be used to design failure-resistant materials from brittle constituents.</div></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"301 \",\"pages\":\"Article 110453\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740325005387\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325005387","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Functionally graded spinodal nanoarchitected ceramics with unprecedented recoverability
A fundamental challenge for lightweight architected materials is their propensity for localized failure due to layered buckling, plastic shear-banding or fracture. Recent research efforts have used disorder to interrupt localization and enhance deformation, but most design strategies simply distribute the accumulation of damage, they do not prevent it from developing and propagating. This work explores how gradient architecture can be designed to hinder crack propagation and promote recoverability in nanostructured ceramic metamaterials. We experimentally and numerically investigated five different shell-based spinodal ceramic nanoarchitectures with 10-80 nm thick alumina films. These were fabricated using atomic layer deposition on sacrificial polymeric scaffolds written using two-photon lithography. All thin-walled (40 nm) architectures underwent shell buckling-dominated deformation and showed nearly full recovery after compression to 45% strain, an expected result for this class of nanoarchitected materials. Thick-walled (40 nm) isotropic and anisotropic architectures experienced considerable local damage during compression and predictably showed permanent failure even at low strains. Unexpectedly, thick-walled conch-shell inspired gradient architectures showed localized damage but experienced a full recovery after compression to 45% strain. This degree of recoverability has never been observed in this high density of a nanostructured ceramic, particularly one with visible local cracking during compression. This result stems from the length scale of the structural heterogeneity — the gradient layers were sufficiently small so as to inhibit the local damage development needed for crack propagation, thereby preventing catastrophic failure. Our findings have significant implications for how length scales and heterogeneity can be used to design failure-resistant materials from brittle constituents.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.