Yiming Liu, Yuanyuan Zheng, Hongjie Lin, Qichang Fan, Ting Tan
{"title":"通过实验和反应分子动力学模拟研究温度对高岭石结构和力学性能的影响","authors":"Yiming Liu, Yuanyuan Zheng, Hongjie Lin, Qichang Fan, Ting Tan","doi":"10.1016/j.clay.2025.107918","DOIUrl":null,"url":null,"abstract":"<div><div>To explore the temperature required for dehydroxylation of clay minerals and the properties of calcined clay in Limestone Calcined Clay Cement (LC3), this work took kaolinite as the research object. The chemical transformation of kaolinite after heat treatment was investigated by Thermogravimetric test (TG), X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectrum (FT-IR). Meanwhile, the internal mechanism of structural transformation and mechanical response was investigated by Reactive Molecular Dynamics (RMD) simulations. TG, FT-IR, and XRD analysis results showed that free water was removed at 378 K, dehydroxylation of kaolinite began at 673 K, and dehydroxylation was complete at 873 K. FT-IR analysis results showed that kaolinite tetrahedron remained stable, while octahedron changed. RMD simulations results showed that dehydroxylation of kaolinite began at 378 K ∼ 473 K, and kaolinite was transformed into metakaolinite at 873 K. And the results also showed that the formation of silanol (Si-OH) caused the peak of FT-IR to widen. The internal mechanism of the interlayer structural transformation of kaolinite was revealed through the analysis of layer spacing, interlayer adhesion work, interlayer water molecules, and H-bond. Eventually, RMD simulations results showed that metakaolinite had stronger deformation resistance than kaolinite by calculating the elastic constants.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"276 ","pages":"Article 107918"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of temperature on structure and mechanical properties of kaolinite via experiments and reactive molecular dynamics simulations\",\"authors\":\"Yiming Liu, Yuanyuan Zheng, Hongjie Lin, Qichang Fan, Ting Tan\",\"doi\":\"10.1016/j.clay.2025.107918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To explore the temperature required for dehydroxylation of clay minerals and the properties of calcined clay in Limestone Calcined Clay Cement (LC3), this work took kaolinite as the research object. The chemical transformation of kaolinite after heat treatment was investigated by Thermogravimetric test (TG), X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectrum (FT-IR). Meanwhile, the internal mechanism of structural transformation and mechanical response was investigated by Reactive Molecular Dynamics (RMD) simulations. TG, FT-IR, and XRD analysis results showed that free water was removed at 378 K, dehydroxylation of kaolinite began at 673 K, and dehydroxylation was complete at 873 K. FT-IR analysis results showed that kaolinite tetrahedron remained stable, while octahedron changed. RMD simulations results showed that dehydroxylation of kaolinite began at 378 K ∼ 473 K, and kaolinite was transformed into metakaolinite at 873 K. And the results also showed that the formation of silanol (Si-OH) caused the peak of FT-IR to widen. The internal mechanism of the interlayer structural transformation of kaolinite was revealed through the analysis of layer spacing, interlayer adhesion work, interlayer water molecules, and H-bond. Eventually, RMD simulations results showed that metakaolinite had stronger deformation resistance than kaolinite by calculating the elastic constants.</div></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"276 \",\"pages\":\"Article 107918\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131725002236\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725002236","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
为了探索石灰石煅烧粘土水泥(LC3)中粘土矿物脱羟基化所需的温度和煅烧粘土的性质,本工作以高岭石为研究对象。采用热重测试(TG)、x射线衍射(XRD)、扫描电镜(SEM)和傅里叶变换红外光谱(FT-IR)研究了热处理后高岭石的化学转变。同时,通过反应分子动力学(RMD)模拟研究了结构转变和力学响应的内部机理。TG、FT-IR和XRD分析结果表明,378 K时游离水被去除,673 K时高岭石开始脱羟基,873 K时脱羟基完成。FT-IR分析结果表明,高岭石的四面体保持稳定,而八面体发生了变化。RMD模拟结果表明,高岭石在378 K ~ 473 K时开始脱羟基,873 K时高岭石转变为偏高岭石。硅烷醇(Si-OH)的形成使FT-IR峰变宽。通过对层间距、层间黏附功、层间水分子和氢键的分析,揭示了高岭石层间结构转变的内在机理。通过计算弹性常数,RMD模拟结果表明偏高岭石比高岭石具有更强的抗变形能力。
Effect of temperature on structure and mechanical properties of kaolinite via experiments and reactive molecular dynamics simulations
To explore the temperature required for dehydroxylation of clay minerals and the properties of calcined clay in Limestone Calcined Clay Cement (LC3), this work took kaolinite as the research object. The chemical transformation of kaolinite after heat treatment was investigated by Thermogravimetric test (TG), X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectrum (FT-IR). Meanwhile, the internal mechanism of structural transformation and mechanical response was investigated by Reactive Molecular Dynamics (RMD) simulations. TG, FT-IR, and XRD analysis results showed that free water was removed at 378 K, dehydroxylation of kaolinite began at 673 K, and dehydroxylation was complete at 873 K. FT-IR analysis results showed that kaolinite tetrahedron remained stable, while octahedron changed. RMD simulations results showed that dehydroxylation of kaolinite began at 378 K ∼ 473 K, and kaolinite was transformed into metakaolinite at 873 K. And the results also showed that the formation of silanol (Si-OH) caused the peak of FT-IR to widen. The internal mechanism of the interlayer structural transformation of kaolinite was revealed through the analysis of layer spacing, interlayer adhesion work, interlayer water molecules, and H-bond. Eventually, RMD simulations results showed that metakaolinite had stronger deformation resistance than kaolinite by calculating the elastic constants.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...