化学气相沉积法生长石墨烯的现状与展望

IF 5.7 3区 材料科学 Q2 Materials Science
Zi-chong HUANG , Weil-in LIU , Jun LI , Yu JIANG , Guo-wen YUAN , Li-bo GAO
{"title":"化学气相沉积法生长石墨烯的现状与展望","authors":"Zi-chong HUANG ,&nbsp;Weil-in LIU ,&nbsp;Jun LI ,&nbsp;Yu JIANG ,&nbsp;Guo-wen YUAN ,&nbsp;Li-bo GAO","doi":"10.1016/S1872-5805(25)60991-7","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene has attracted widespread attention since 2004 because of its outstanding physical and chemical properties. Among its various synthesis methods, chemical vapor deposition (CVD) has emerged as the dominant approach for producing high-quality grapheme films, owing to its high controllability, low cost, and scalability. This review systematically summarizes the technological development of graphene synthesis by CVD, with a focus on recent progress in key areas such as single-crystal graphene growth, surface flatness control, precise control of the number of layers, and efficient large-scale production. Studies have shown that strategies such as substrate design, proton-assisted decoupling techniques, and oxygenassisted methods have enabled the wafer-scale synthesis of single-crystal graphene with electrical properties comparable to that of mechanically exfoliated samples. However, several technical challenges remain, including direct growth on insulating substrates, high-quality synthesis at low-temperatures, and the dynamic control of defects. Looking ahead, the integration of novel carbon sources, multifunctional fabrication processes, and rollto-roll industrial production is expected to advance the practical use of graphene in fields such as flexible electronics and energy storage.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (69KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 457-476"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current status and prospect of graphene growth by chemical vapor deposition\",\"authors\":\"Zi-chong HUANG ,&nbsp;Weil-in LIU ,&nbsp;Jun LI ,&nbsp;Yu JIANG ,&nbsp;Guo-wen YUAN ,&nbsp;Li-bo GAO\",\"doi\":\"10.1016/S1872-5805(25)60991-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graphene has attracted widespread attention since 2004 because of its outstanding physical and chemical properties. Among its various synthesis methods, chemical vapor deposition (CVD) has emerged as the dominant approach for producing high-quality grapheme films, owing to its high controllability, low cost, and scalability. This review systematically summarizes the technological development of graphene synthesis by CVD, with a focus on recent progress in key areas such as single-crystal graphene growth, surface flatness control, precise control of the number of layers, and efficient large-scale production. Studies have shown that strategies such as substrate design, proton-assisted decoupling techniques, and oxygenassisted methods have enabled the wafer-scale synthesis of single-crystal graphene with electrical properties comparable to that of mechanically exfoliated samples. However, several technical challenges remain, including direct growth on insulating substrates, high-quality synthesis at low-temperatures, and the dynamic control of defects. Looking ahead, the integration of novel carbon sources, multifunctional fabrication processes, and rollto-roll industrial production is expected to advance the practical use of graphene in fields such as flexible electronics and energy storage.\\n\\t\\t\\t\\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (69KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"40 3\",\"pages\":\"Pages 457-476\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580525609917\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609917","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

自2004年以来,石墨烯因其优异的物理和化学性能引起了广泛的关注。在各种合成方法中,化学气相沉积(CVD)因其高可控性、低成本和可扩展性而成为生产高质量石墨烯薄膜的主要方法。本文系统总结了化学气相沉积法合成石墨烯的技术进展,重点介绍了石墨烯单晶生长、表面平整度控制、层数精确控制和高效规模化生产等关键领域的最新进展。研究表明,衬底设计、质子辅助解耦技术和氧辅助方法等策略使单晶石墨烯的晶片级合成成为可能,其电学性能与机械剥离样品相当。然而,仍然存在一些技术挑战,包括在绝缘衬底上的直接生长,低温下的高质量合成以及缺陷的动态控制。展望未来,新型碳源、多功能制造工艺和卷对卷工业生产的集成有望推动石墨烯在柔性电子和储能等领域的实际应用。下载:下载高分辨率图片(69KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current status and prospect of graphene growth by chemical vapor deposition
Graphene has attracted widespread attention since 2004 because of its outstanding physical and chemical properties. Among its various synthesis methods, chemical vapor deposition (CVD) has emerged as the dominant approach for producing high-quality grapheme films, owing to its high controllability, low cost, and scalability. This review systematically summarizes the technological development of graphene synthesis by CVD, with a focus on recent progress in key areas such as single-crystal graphene growth, surface flatness control, precise control of the number of layers, and efficient large-scale production. Studies have shown that strategies such as substrate design, proton-assisted decoupling techniques, and oxygenassisted methods have enabled the wafer-scale synthesis of single-crystal graphene with electrical properties comparable to that of mechanically exfoliated samples. However, several technical challenges remain, including direct growth on insulating substrates, high-quality synthesis at low-temperatures, and the dynamic control of defects. Looking ahead, the integration of novel carbon sources, multifunctional fabrication processes, and rollto-roll industrial production is expected to advance the practical use of graphene in fields such as flexible electronics and energy storage.
  1. Download: Download high-res image (69KB)
  2. Download: Download full-size image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信