Mo368POM@Nb2CTx@MoS2异质结构中加速可见光析氢的协同电荷转移工程

IF 5.3 2区 化学 Q1 CHEMISTRY, APPLIED
Khalid Umer , Khuram Hasnain , Bonan Li , Hira Shahid , Xiao Fang , Xi Zhang , Baochun Ma , Yong Ding
{"title":"Mo368POM@Nb2CTx@MoS2异质结构中加速可见光析氢的协同电荷转移工程","authors":"Khalid Umer ,&nbsp;Khuram Hasnain ,&nbsp;Bonan Li ,&nbsp;Hira Shahid ,&nbsp;Xiao Fang ,&nbsp;Xi Zhang ,&nbsp;Baochun Ma ,&nbsp;Yong Ding","doi":"10.1016/j.cattod.2025.115438","DOIUrl":null,"url":null,"abstract":"<div><div>The transition to sustainable energy systems urgently demands high-performance photocatalysts capable of efficient solar-driven hydrogen production to combat fossil fuel dependency. Herein, a rationally designed ternary heterostructure, Mo<sub>368</sub>@Nb<sub>2</sub>CT<em><sub>x</sub></em>@MoS<sub>2</sub> is presented by incorporation of MoS<sub>2</sub>, Mo<sub>368</sub> polyoxometalate (POM) and Nb<sub>2</sub>CT<em><sub>x</sub></em> MXene. This breakthrough arises from the synergistic interplay of MoS<sub>2</sub> as a semiconductor host for light-harvesting, Mo<sub>368</sub> polyoxometalate (POM) as reduction co-catalyst, and Nb<sub>2</sub>CT<em><sub>x</sub></em> as an electron sink, which collectively establish a cascade charge-transfer network. The integration of Nb<sub>2</sub>CT<em><sub>x</sub></em> accelerates electron extraction and transport due to its metallic conductivity, while Mo<sub>368</sub> POM functions as reduction agent, dynamically trapping photogenerated carriers and suppressing recombination losses. The composite catalyst Mo<sub>368</sub>@Nb<sub>2</sub>CT<em><sub>x</sub></em>@MoS<sub>2</sub> achieves a hydrogen evolution rate of 1.6 mmol g⁻¹ h⁻<sup>1</sup> under visible-light irradiation with apparent quantum yield (AQY) of 6.4 %. By elucidating the complementary roles of MXene and POM in modulating carrier dynamics, this work establishes a unique design framework for heterostructure photocatalysts. The findings advance the frontier of solar fuel production, providing a scalable strategy to engineer multifunctional catalytic architectures, specifically engineered for high-efficiency solar-driven hydrogen evolution through rational material design.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"459 ","pages":"Article 115438"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic charge transfer engineering in Mo368POM@Nb2CTx@MoS2 heterostructure for accelerated visible light-driven hydrogen evolution\",\"authors\":\"Khalid Umer ,&nbsp;Khuram Hasnain ,&nbsp;Bonan Li ,&nbsp;Hira Shahid ,&nbsp;Xiao Fang ,&nbsp;Xi Zhang ,&nbsp;Baochun Ma ,&nbsp;Yong Ding\",\"doi\":\"10.1016/j.cattod.2025.115438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transition to sustainable energy systems urgently demands high-performance photocatalysts capable of efficient solar-driven hydrogen production to combat fossil fuel dependency. Herein, a rationally designed ternary heterostructure, Mo<sub>368</sub>@Nb<sub>2</sub>CT<em><sub>x</sub></em>@MoS<sub>2</sub> is presented by incorporation of MoS<sub>2</sub>, Mo<sub>368</sub> polyoxometalate (POM) and Nb<sub>2</sub>CT<em><sub>x</sub></em> MXene. This breakthrough arises from the synergistic interplay of MoS<sub>2</sub> as a semiconductor host for light-harvesting, Mo<sub>368</sub> polyoxometalate (POM) as reduction co-catalyst, and Nb<sub>2</sub>CT<em><sub>x</sub></em> as an electron sink, which collectively establish a cascade charge-transfer network. The integration of Nb<sub>2</sub>CT<em><sub>x</sub></em> accelerates electron extraction and transport due to its metallic conductivity, while Mo<sub>368</sub> POM functions as reduction agent, dynamically trapping photogenerated carriers and suppressing recombination losses. The composite catalyst Mo<sub>368</sub>@Nb<sub>2</sub>CT<em><sub>x</sub></em>@MoS<sub>2</sub> achieves a hydrogen evolution rate of 1.6 mmol g⁻¹ h⁻<sup>1</sup> under visible-light irradiation with apparent quantum yield (AQY) of 6.4 %. By elucidating the complementary roles of MXene and POM in modulating carrier dynamics, this work establishes a unique design framework for heterostructure photocatalysts. The findings advance the frontier of solar fuel production, providing a scalable strategy to engineer multifunctional catalytic architectures, specifically engineered for high-efficiency solar-driven hydrogen evolution through rational material design.</div></div>\",\"PeriodicalId\":264,\"journal\":{\"name\":\"Catalysis Today\",\"volume\":\"459 \",\"pages\":\"Article 115438\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Today\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920586125002561\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125002561","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

向可持续能源系统的过渡迫切需要高性能的光催化剂,能够高效的太阳能驱动制氢,以对抗对化石燃料的依赖。本文通过加入MoS2、Mo368多金属氧酸盐(POM)和Nb2CTx MXene,合理设计了三元异质结构Mo368@Nb2CTx@MoS2。这一突破源于MoS2作为光收集的半导体宿主,Mo368多金属氧酸盐(POM)作为还原助催化剂,Nb2CTx作为电子汇,它们共同建立了级联电荷转移网络。由于其金属导电性,Nb2CTx的集成加速了电子的提取和输运,而Mo368 POM作为还原剂,动态捕获光生载流子并抑制复合损失。复合催化剂Mo368@Nb2CTx@MoS2在可见光照射下的出氢速率为1.6 mmol g⁻¹ h⁻,表观量子产率(AQY)为6.4 %。通过阐明MXene和POM在调节载流子动力学中的互补作用,本工作建立了异质结构光催化剂的独特设计框架。这一发现推进了太阳能燃料生产的前沿,提供了一种可扩展的策略来设计多功能催化体系结构,特别是通过合理的材料设计来实现高效的太阳能驱动的氢演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic charge transfer engineering in Mo368POM@Nb2CTx@MoS2 heterostructure for accelerated visible light-driven hydrogen evolution
The transition to sustainable energy systems urgently demands high-performance photocatalysts capable of efficient solar-driven hydrogen production to combat fossil fuel dependency. Herein, a rationally designed ternary heterostructure, Mo368@Nb2CTx@MoS2 is presented by incorporation of MoS2, Mo368 polyoxometalate (POM) and Nb2CTx MXene. This breakthrough arises from the synergistic interplay of MoS2 as a semiconductor host for light-harvesting, Mo368 polyoxometalate (POM) as reduction co-catalyst, and Nb2CTx as an electron sink, which collectively establish a cascade charge-transfer network. The integration of Nb2CTx accelerates electron extraction and transport due to its metallic conductivity, while Mo368 POM functions as reduction agent, dynamically trapping photogenerated carriers and suppressing recombination losses. The composite catalyst Mo368@Nb2CTx@MoS2 achieves a hydrogen evolution rate of 1.6 mmol g⁻¹ h⁻1 under visible-light irradiation with apparent quantum yield (AQY) of 6.4 %. By elucidating the complementary roles of MXene and POM in modulating carrier dynamics, this work establishes a unique design framework for heterostructure photocatalysts. The findings advance the frontier of solar fuel production, providing a scalable strategy to engineer multifunctional catalytic architectures, specifically engineered for high-efficiency solar-driven hydrogen evolution through rational material design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Today
Catalysis Today 化学-工程:化工
CiteScore
11.50
自引率
3.80%
发文量
573
审稿时长
2.9 months
期刊介绍: Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues. Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信