Chang-lin HE , Zhi-chao SHANG , Wei-guang WANG , Xiang-ming LI , Kun WANG , Yue-xing CHEN , Xin-tan BAI , Pei-pei WANG , Xiang JI , Xuan-ru REN , A Levashov Evgeny , Kiryukhantsev-Korneev Ph V , Pei-zhong FENG
{"title":"CeO2掺杂提高碳/碳复合材料表面HfB2-SiC涂层的抗氧化性","authors":"Chang-lin HE , Zhi-chao SHANG , Wei-guang WANG , Xiang-ming LI , Kun WANG , Yue-xing CHEN , Xin-tan BAI , Pei-pei WANG , Xiang JI , Xuan-ru REN , A Levashov Evgeny , Kiryukhantsev-Korneev Ph V , Pei-zhong FENG","doi":"10.1016/S1872-5805(25)60994-2","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the oxidation resistance of HfB<sub>2</sub>-SiC coatings on carbon/carbon composites at 1700 °C in air, CeO<sub>2</sub> was introduced to improve oxygen blocking and its mechanism was investigated. During the rapid oxidation stage, CeO<sub>2</sub> accelerated the formation of a multiphase glass layer on the coating surface. The maximum oxidation rates of CeO<sub>2</sub>-HfB<sub>2</sub>-SiC coatings with 1%, 3%, and 5% CeO<sub>2</sub> were 24.1%, 20.3%, and 53.2% higher than that of the unmodified HfB<sub>2</sub>-SiC coating, respectively. In the stable oxidation stage, the maximum oxidation rates of coatings with 1% and 3% CeO<sub>2</sub> decreased by 31.4% and 21.9%, respectively, demonstrating adequate inert protection. CeO<sub>2</sub> is a “coagulant” and “stabilizer” in the composite glass layer. However, increasing the CeO<sub>2</sub> content accelerates the reaction between the SiO<sub>2</sub> glass phase and SiC, leading to a higher SiO<sub>2</sub> consumption and reduced self-healing ability of the glass layer. The 1% CeO<sub>2</sub>-60% HfB<sub>2</sub>-39%SiC coating showed improved glass layer viscosity and stability, moderate SiO<sub>2</sub> consumption, and better self-healing ability, significantly boosting the oxidation protection of the coating.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (106KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 688-701"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the oxidation resistance of HfB2-SiC coatings on carbon/carbon composites by CeO2 doping\",\"authors\":\"Chang-lin HE , Zhi-chao SHANG , Wei-guang WANG , Xiang-ming LI , Kun WANG , Yue-xing CHEN , Xin-tan BAI , Pei-pei WANG , Xiang JI , Xuan-ru REN , A Levashov Evgeny , Kiryukhantsev-Korneev Ph V , Pei-zhong FENG\",\"doi\":\"10.1016/S1872-5805(25)60994-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To improve the oxidation resistance of HfB<sub>2</sub>-SiC coatings on carbon/carbon composites at 1700 °C in air, CeO<sub>2</sub> was introduced to improve oxygen blocking and its mechanism was investigated. During the rapid oxidation stage, CeO<sub>2</sub> accelerated the formation of a multiphase glass layer on the coating surface. The maximum oxidation rates of CeO<sub>2</sub>-HfB<sub>2</sub>-SiC coatings with 1%, 3%, and 5% CeO<sub>2</sub> were 24.1%, 20.3%, and 53.2% higher than that of the unmodified HfB<sub>2</sub>-SiC coating, respectively. In the stable oxidation stage, the maximum oxidation rates of coatings with 1% and 3% CeO<sub>2</sub> decreased by 31.4% and 21.9%, respectively, demonstrating adequate inert protection. CeO<sub>2</sub> is a “coagulant” and “stabilizer” in the composite glass layer. However, increasing the CeO<sub>2</sub> content accelerates the reaction between the SiO<sub>2</sub> glass phase and SiC, leading to a higher SiO<sub>2</sub> consumption and reduced self-healing ability of the glass layer. The 1% CeO<sub>2</sub>-60% HfB<sub>2</sub>-39%SiC coating showed improved glass layer viscosity and stability, moderate SiO<sub>2</sub> consumption, and better self-healing ability, significantly boosting the oxidation protection of the coating.\\n\\t\\t\\t\\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (106KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"40 3\",\"pages\":\"Pages 688-701\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580525609942\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609942","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Improving the oxidation resistance of HfB2-SiC coatings on carbon/carbon composites by CeO2 doping
To improve the oxidation resistance of HfB2-SiC coatings on carbon/carbon composites at 1700 °C in air, CeO2 was introduced to improve oxygen blocking and its mechanism was investigated. During the rapid oxidation stage, CeO2 accelerated the formation of a multiphase glass layer on the coating surface. The maximum oxidation rates of CeO2-HfB2-SiC coatings with 1%, 3%, and 5% CeO2 were 24.1%, 20.3%, and 53.2% higher than that of the unmodified HfB2-SiC coating, respectively. In the stable oxidation stage, the maximum oxidation rates of coatings with 1% and 3% CeO2 decreased by 31.4% and 21.9%, respectively, demonstrating adequate inert protection. CeO2 is a “coagulant” and “stabilizer” in the composite glass layer. However, increasing the CeO2 content accelerates the reaction between the SiO2 glass phase and SiC, leading to a higher SiO2 consumption and reduced self-healing ability of the glass layer. The 1% CeO2-60% HfB2-39%SiC coating showed improved glass layer viscosity and stability, moderate SiO2 consumption, and better self-healing ability, significantly boosting the oxidation protection of the coating.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.