超薄氢取代石墨烯纳米片,用于环境污染物的降解

IF 5.7 3区 材料科学 Q2 Materials Science
Xin-yu SU , Sheng-en QIU , Hang YANG , Feng YU , Gao-rong HAN , Zong-ping CHEN
{"title":"超薄氢取代石墨烯纳米片,用于环境污染物的降解","authors":"Xin-yu SU ,&nbsp;Sheng-en QIU ,&nbsp;Hang YANG ,&nbsp;Feng YU ,&nbsp;Gao-rong HAN ,&nbsp;Zong-ping CHEN","doi":"10.1016/S1872-5805(25)60973-5","DOIUrl":null,"url":null,"abstract":"<div><div>Graphdiyne (GDY) and its derivatives have been considered ideal supporting materials for nanoscale active particles because of their unique atomic and electronic structure. An efficient bi-metal Cu-Pd catalyst was added to produce the uniform deposition of Pd nano-clusters with an average size of ~0.95 nm on hydrogen-substituted GDY (H-GDY) nanosheets. With the assistance of NaBH<sub>4</sub>, the resulting Pd/H-GDY was very effective in the degradation of 4-nitrophenol (4-NP), whose conversion was sharply increased to 97.21% in 100 s with a rate constant per unit mass (k‘) of 8.97×10<sup>5</sup> min<sup>–1</sup> g<sup>–1</sup>. Additionally, dyes such as methyl orange (MO) and Congo red (CR) were completely degraded within 180 and 90 s, respectively. The Pd/H-GDY maintained this activity after 5 reduction cycles. These results highlight the promising performance of Pd/H-GDY in catalyzing the degradation of various pollutants, which is attributed to the combined effect of the large π-conjugated structure of the H-GDY nanosheets and the evenly distributed Pd nanoclusters.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (117KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 666-676"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin hydrogen-substituted graphdiyne nanosheets containing pdclusters used for the degradation of environmental pollutants\",\"authors\":\"Xin-yu SU ,&nbsp;Sheng-en QIU ,&nbsp;Hang YANG ,&nbsp;Feng YU ,&nbsp;Gao-rong HAN ,&nbsp;Zong-ping CHEN\",\"doi\":\"10.1016/S1872-5805(25)60973-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graphdiyne (GDY) and its derivatives have been considered ideal supporting materials for nanoscale active particles because of their unique atomic and electronic structure. An efficient bi-metal Cu-Pd catalyst was added to produce the uniform deposition of Pd nano-clusters with an average size of ~0.95 nm on hydrogen-substituted GDY (H-GDY) nanosheets. With the assistance of NaBH<sub>4</sub>, the resulting Pd/H-GDY was very effective in the degradation of 4-nitrophenol (4-NP), whose conversion was sharply increased to 97.21% in 100 s with a rate constant per unit mass (k‘) of 8.97×10<sup>5</sup> min<sup>–1</sup> g<sup>–1</sup>. Additionally, dyes such as methyl orange (MO) and Congo red (CR) were completely degraded within 180 and 90 s, respectively. The Pd/H-GDY maintained this activity after 5 reduction cycles. These results highlight the promising performance of Pd/H-GDY in catalyzing the degradation of various pollutants, which is attributed to the combined effect of the large π-conjugated structure of the H-GDY nanosheets and the evenly distributed Pd nanoclusters.\\n\\t\\t\\t\\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (117KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"40 3\",\"pages\":\"Pages 666-676\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580525609735\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609735","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

石墨炔及其衍生物由于其独特的原子和电子结构而被认为是纳米级活性粒子的理想载体材料。加入高效双金属Cu-Pd催化剂,在氢取代GDY (H-GDY)纳米片上均匀沉积了平均尺寸约0.95 nm的Pd纳米团簇。在NaBH4的辅助下,Pd/H-GDY对4-硝基苯酚(4-NP)的降解效果非常好,在100 s内转化率达到97.21%,单位质量(k’)的速率常数为8.97×105 min-1 g-1。此外,甲基橙(MO)和刚果红(CR)等染料分别在180 s和90 s内完全降解。Pd/H-GDY在5次还原循环后仍保持这种活性。这些结果表明,Pd/H-GDY在催化降解各种污染物方面具有良好的性能,这是由于H-GDY纳米片的大π共轭结构和均匀分布的Pd纳米团簇的共同作用。下载:下载高分辨率图片(117KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrathin hydrogen-substituted graphdiyne nanosheets containing pdclusters used for the degradation of environmental pollutants
Graphdiyne (GDY) and its derivatives have been considered ideal supporting materials for nanoscale active particles because of their unique atomic and electronic structure. An efficient bi-metal Cu-Pd catalyst was added to produce the uniform deposition of Pd nano-clusters with an average size of ~0.95 nm on hydrogen-substituted GDY (H-GDY) nanosheets. With the assistance of NaBH4, the resulting Pd/H-GDY was very effective in the degradation of 4-nitrophenol (4-NP), whose conversion was sharply increased to 97.21% in 100 s with a rate constant per unit mass (k‘) of 8.97×105 min–1 g–1. Additionally, dyes such as methyl orange (MO) and Congo red (CR) were completely degraded within 180 and 90 s, respectively. The Pd/H-GDY maintained this activity after 5 reduction cycles. These results highlight the promising performance of Pd/H-GDY in catalyzing the degradation of various pollutants, which is attributed to the combined effect of the large π-conjugated structure of the H-GDY nanosheets and the evenly distributed Pd nanoclusters.
  1. Download: Download high-res image (117KB)
  2. Download: Download full-size image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信