将统计建模和机器学习技术与SHAP集成,用于流行病学数据分析

IF 3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
S. Qurat Ul Ain , Khalid Ul Islam Rather
{"title":"将统计建模和机器学习技术与SHAP集成,用于流行病学数据分析","authors":"S. Qurat Ul Ain ,&nbsp;Khalid Ul Islam Rather","doi":"10.1016/j.annepidem.2025.06.012","DOIUrl":null,"url":null,"abstract":"<div><div>Epidemiological studies increasingly rely on advanced analytics to uncover complex relationships in health data. This study employs an innovative SHAP (SHapley Additive exPlanations)-driven framework to enhance the interpretability of machine learning models applied to a dataset of 1200 patients. Key features, including demographic, anthropometric, lifestyle, and clinical parameters, were analyzed using a Random Forest classifier integrated with SHAP values. Health outcomes, specifically the presence of chronic diseases such as diabetes, were predicted with high accuracy (85 %) and AUC (0.89), outperforming logistic regression (accuracy = 79 %, AUC = 0.84). SHAP values further highlighted influential predictors such as BMI and age, offering insights into individual contributions to health outcomes. By bridging traditional epidemiological analysis and modern machine learning techniques, this study offers a transparent and interpretable model for healthcare decision-making.</div></div>","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"108 ","pages":"Pages 85-91"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated statistical modeling and machine learning techniques with SHAP for epidemiological data analysis\",\"authors\":\"S. Qurat Ul Ain ,&nbsp;Khalid Ul Islam Rather\",\"doi\":\"10.1016/j.annepidem.2025.06.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epidemiological studies increasingly rely on advanced analytics to uncover complex relationships in health data. This study employs an innovative SHAP (SHapley Additive exPlanations)-driven framework to enhance the interpretability of machine learning models applied to a dataset of 1200 patients. Key features, including demographic, anthropometric, lifestyle, and clinical parameters, were analyzed using a Random Forest classifier integrated with SHAP values. Health outcomes, specifically the presence of chronic diseases such as diabetes, were predicted with high accuracy (85 %) and AUC (0.89), outperforming logistic regression (accuracy = 79 %, AUC = 0.84). SHAP values further highlighted influential predictors such as BMI and age, offering insights into individual contributions to health outcomes. By bridging traditional epidemiological analysis and modern machine learning techniques, this study offers a transparent and interpretable model for healthcare decision-making.</div></div>\",\"PeriodicalId\":50767,\"journal\":{\"name\":\"Annals of Epidemiology\",\"volume\":\"108 \",\"pages\":\"Pages 85-91\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047279725001334\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047279725001334","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

流行病学研究越来越依赖于高级分析来揭示健康数据中的复杂关系。本研究采用了一种创新的SHAP (SHapley Additive explanation)驱动框架,以增强应用于1200名患者数据集的机器学习模型的可解释性。关键特征,包括人口统计、人体测量、生活方式和临床参数,使用随机森林分类器结合SHAP值进行分析。健康结果,特别是慢性疾病如糖尿病的存在,预测准确率高(85 %)和AUC(0.89),优于logistic回归(准确率= 79 %,AUC = 0.84)。SHAP值进一步强调了有影响力的预测因素,如BMI和年龄,为个人对健康结果的贡献提供了见解。通过连接传统的流行病学分析和现代机器学习技术,本研究为医疗保健决策提供了一个透明和可解释的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated statistical modeling and machine learning techniques with SHAP for epidemiological data analysis
Epidemiological studies increasingly rely on advanced analytics to uncover complex relationships in health data. This study employs an innovative SHAP (SHapley Additive exPlanations)-driven framework to enhance the interpretability of machine learning models applied to a dataset of 1200 patients. Key features, including demographic, anthropometric, lifestyle, and clinical parameters, were analyzed using a Random Forest classifier integrated with SHAP values. Health outcomes, specifically the presence of chronic diseases such as diabetes, were predicted with high accuracy (85 %) and AUC (0.89), outperforming logistic regression (accuracy = 79 %, AUC = 0.84). SHAP values further highlighted influential predictors such as BMI and age, offering insights into individual contributions to health outcomes. By bridging traditional epidemiological analysis and modern machine learning techniques, this study offers a transparent and interpretable model for healthcare decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Epidemiology
Annals of Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
7.40
自引率
1.80%
发文量
207
审稿时长
59 days
期刊介绍: The journal emphasizes the application of epidemiologic methods to issues that affect the distribution and determinants of human illness in diverse contexts. Its primary focus is on chronic and acute conditions of diverse etiologies and of major importance to clinical medicine, public health, and health care delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信