{"title":"帕金森病静息状态网络的纵向变化","authors":"Matthias Sure , Rasha Hyder , Levent Kandemir , Jan Vesper , Alfons Schnitzler , Esther Florin","doi":"10.1016/j.nicl.2025.103833","DOIUrl":null,"url":null,"abstract":"<div><div>Deep brain stimulation (DBS), but also the sole implantation of the electrodes and dopaminergic medication, can reduce symptoms in Parkinson’s disease (PD) patients. Furthermore, an effect on network activity is known for all three options separately. However, long-term effects have rarely been investigated. Therefore, in the present study, we focus on the long-term impact of dopaminergic medication on whole-brain network activity following DBS electrode implantation.</div><div>Therefore, we extracted resting state networks (RSNs) of 20 PD patients (4 females, (59.00 ± 9.72 years) from magnetoencephalography data. We recorded 30 min of resting-state activity two days before and one year after implantation of the electrodes with and without dopaminergic medication, but DBS was turned off. RSNs were obtained based on the phase-amplitude coupling between a low-frequency phase and a high gamma amplitude and examined for differences between conditions (i.e., pre- vs. post-surgery).</div><div>We identified three RSNs across all conditions: sensory-motor, visual, and frontal. Each RSN was selectively altered due to a year of disease progression – while patients being treated with dopaminergic medication and DBS. In line with previous literature, we focus on longitudinal changes in RSNs over time after electrode implantation, acknowledging that chronic DBS treatment and other factors may confound the interpretation of these changes. In addition, the alterations found were RSN specific, as dopaminergic medication showed a greater impact on the frontal RSN, and the longitudinal factor expressed by the disease progression was more severe in alterations in the SMN and the visual RSN.</div></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"47 ","pages":"Article 103833"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal changes of resting-state networks in Parkinson‘s disease\",\"authors\":\"Matthias Sure , Rasha Hyder , Levent Kandemir , Jan Vesper , Alfons Schnitzler , Esther Florin\",\"doi\":\"10.1016/j.nicl.2025.103833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep brain stimulation (DBS), but also the sole implantation of the electrodes and dopaminergic medication, can reduce symptoms in Parkinson’s disease (PD) patients. Furthermore, an effect on network activity is known for all three options separately. However, long-term effects have rarely been investigated. Therefore, in the present study, we focus on the long-term impact of dopaminergic medication on whole-brain network activity following DBS electrode implantation.</div><div>Therefore, we extracted resting state networks (RSNs) of 20 PD patients (4 females, (59.00 ± 9.72 years) from magnetoencephalography data. We recorded 30 min of resting-state activity two days before and one year after implantation of the electrodes with and without dopaminergic medication, but DBS was turned off. RSNs were obtained based on the phase-amplitude coupling between a low-frequency phase and a high gamma amplitude and examined for differences between conditions (i.e., pre- vs. post-surgery).</div><div>We identified three RSNs across all conditions: sensory-motor, visual, and frontal. Each RSN was selectively altered due to a year of disease progression – while patients being treated with dopaminergic medication and DBS. In line with previous literature, we focus on longitudinal changes in RSNs over time after electrode implantation, acknowledging that chronic DBS treatment and other factors may confound the interpretation of these changes. In addition, the alterations found were RSN specific, as dopaminergic medication showed a greater impact on the frontal RSN, and the longitudinal factor expressed by the disease progression was more severe in alterations in the SMN and the visual RSN.</div></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":\"47 \",\"pages\":\"Article 103833\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213158225001032\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158225001032","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Longitudinal changes of resting-state networks in Parkinson‘s disease
Deep brain stimulation (DBS), but also the sole implantation of the electrodes and dopaminergic medication, can reduce symptoms in Parkinson’s disease (PD) patients. Furthermore, an effect on network activity is known for all three options separately. However, long-term effects have rarely been investigated. Therefore, in the present study, we focus on the long-term impact of dopaminergic medication on whole-brain network activity following DBS electrode implantation.
Therefore, we extracted resting state networks (RSNs) of 20 PD patients (4 females, (59.00 ± 9.72 years) from magnetoencephalography data. We recorded 30 min of resting-state activity two days before and one year after implantation of the electrodes with and without dopaminergic medication, but DBS was turned off. RSNs were obtained based on the phase-amplitude coupling between a low-frequency phase and a high gamma amplitude and examined for differences between conditions (i.e., pre- vs. post-surgery).
We identified three RSNs across all conditions: sensory-motor, visual, and frontal. Each RSN was selectively altered due to a year of disease progression – while patients being treated with dopaminergic medication and DBS. In line with previous literature, we focus on longitudinal changes in RSNs over time after electrode implantation, acknowledging that chronic DBS treatment and other factors may confound the interpretation of these changes. In addition, the alterations found were RSN specific, as dopaminergic medication showed a greater impact on the frontal RSN, and the longitudinal factor expressed by the disease progression was more severe in alterations in the SMN and the visual RSN.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.