Zhao Nan , Yabo Xu , Jingshuang Ma , Yanfang Wang , Yaowei Han , Mengna Wang , Bo Zhao , Hua Wang
{"title":"混合溶剂基离子液体两步后处理提高了PEDOT:PSS薄膜的热电性能","authors":"Zhao Nan , Yabo Xu , Jingshuang Ma , Yanfang Wang , Yaowei Han , Mengna Wang , Bo Zhao , Hua Wang","doi":"10.1016/j.orgel.2025.107289","DOIUrl":null,"url":null,"abstract":"<div><div>Thermoelectric (TE) materials and generators can convert thermal energy into electrical energy directly through temperature gradients to solve the pollution of waste heat and the energy crisis. Here, we adopted a two-step post-treatment of PEDOT:PSS films by sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) and the new mixed solvent consisting of sodium borohydride (NaBH<sub>4</sub>) and 1-ethyl-3-methylimidazolyl dicyandiamide (EMIM-DCA). H<sub>2</sub>SO<sub>4</sub> and EMIM-DCA can enhance electrical conductivity by removing the insulating PSS and induce benzenoid-to-quinoid conformational transformation of the PEDOT chains. NaBH<sub>4</sub> as a reducing agent can reduce the dipolaritons of PEDOT to polaritons or neutral monomers, which can achieve an increase of the Seebeck coefficient. The second step post-treatment using mixed solvent of NaBH<sub>4</sub>+EMIM-DCA increased the Seebeck coefficient while maintaining a high level of electrical conductivity, generating the highest power factor of 95.1 μW/m·K<sup>2</sup> (electrical conductivity of 1214.3 S/cm and Seebeck coefficient of 28.0 μV/K) at room temperature, which was one of the best results with mixed solvent post-treatment up to now. Besides, a 6-legs TE generator was prepared and achieved with the highest output voltage of 5.77 mV and highest output power of 23.43 nW under the <em>ΔT</em> of 30 K, which represented great prospects for the application in self-powered wearable electronics.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"144 ","pages":"Article 107289"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced thermoelectric performance of PEDOT:PSS film by two-step post-treatment with mixed solvent based ionic liquid\",\"authors\":\"Zhao Nan , Yabo Xu , Jingshuang Ma , Yanfang Wang , Yaowei Han , Mengna Wang , Bo Zhao , Hua Wang\",\"doi\":\"10.1016/j.orgel.2025.107289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermoelectric (TE) materials and generators can convert thermal energy into electrical energy directly through temperature gradients to solve the pollution of waste heat and the energy crisis. Here, we adopted a two-step post-treatment of PEDOT:PSS films by sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) and the new mixed solvent consisting of sodium borohydride (NaBH<sub>4</sub>) and 1-ethyl-3-methylimidazolyl dicyandiamide (EMIM-DCA). H<sub>2</sub>SO<sub>4</sub> and EMIM-DCA can enhance electrical conductivity by removing the insulating PSS and induce benzenoid-to-quinoid conformational transformation of the PEDOT chains. NaBH<sub>4</sub> as a reducing agent can reduce the dipolaritons of PEDOT to polaritons or neutral monomers, which can achieve an increase of the Seebeck coefficient. The second step post-treatment using mixed solvent of NaBH<sub>4</sub>+EMIM-DCA increased the Seebeck coefficient while maintaining a high level of electrical conductivity, generating the highest power factor of 95.1 μW/m·K<sup>2</sup> (electrical conductivity of 1214.3 S/cm and Seebeck coefficient of 28.0 μV/K) at room temperature, which was one of the best results with mixed solvent post-treatment up to now. Besides, a 6-legs TE generator was prepared and achieved with the highest output voltage of 5.77 mV and highest output power of 23.43 nW under the <em>ΔT</em> of 30 K, which represented great prospects for the application in self-powered wearable electronics.</div></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"144 \",\"pages\":\"Article 107289\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119925000953\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000953","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced thermoelectric performance of PEDOT:PSS film by two-step post-treatment with mixed solvent based ionic liquid
Thermoelectric (TE) materials and generators can convert thermal energy into electrical energy directly through temperature gradients to solve the pollution of waste heat and the energy crisis. Here, we adopted a two-step post-treatment of PEDOT:PSS films by sulfuric acid (H2SO4) and the new mixed solvent consisting of sodium borohydride (NaBH4) and 1-ethyl-3-methylimidazolyl dicyandiamide (EMIM-DCA). H2SO4 and EMIM-DCA can enhance electrical conductivity by removing the insulating PSS and induce benzenoid-to-quinoid conformational transformation of the PEDOT chains. NaBH4 as a reducing agent can reduce the dipolaritons of PEDOT to polaritons or neutral monomers, which can achieve an increase of the Seebeck coefficient. The second step post-treatment using mixed solvent of NaBH4+EMIM-DCA increased the Seebeck coefficient while maintaining a high level of electrical conductivity, generating the highest power factor of 95.1 μW/m·K2 (electrical conductivity of 1214.3 S/cm and Seebeck coefficient of 28.0 μV/K) at room temperature, which was one of the best results with mixed solvent post-treatment up to now. Besides, a 6-legs TE generator was prepared and achieved with the highest output voltage of 5.77 mV and highest output power of 23.43 nW under the ΔT of 30 K, which represented great prospects for the application in self-powered wearable electronics.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.