基于博弈论和分支模型预测控制的自动车道合并

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Luyao Zhang;Shaohang Han;Sergio Grammatico
{"title":"基于博弈论和分支模型预测控制的自动车道合并","authors":"Luyao Zhang;Shaohang Han;Sergio Grammatico","doi":"10.1109/TCST.2024.3477354","DOIUrl":null,"url":null,"abstract":"We propose an integrated behavior and motion planning framework for the lane-merging problem. The behavior planner combines search-based planning with game theory to model vehicle interactions and plan multivehicle trajectories. Inspired by human drivers, we model the lane-merging problem as a gap selection process and determine the appropriate gap by solving a matrix game. Moreover, we introduce a branch model predictive control (BMPC) framework to account for the uncertain equilibrium strategies adopted by the surrounding vehicles, including Nash and Stackelberg strategies. A tailored numerical solver is developed to enhance computational efficiency by exploiting the tree structure inherent in BMPC. Finally, we validate our proposed integrated planner using real traffic data and demonstrate its effectiveness in handling interactions in dense traffic scenarios.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 4","pages":"1258-1269"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Lane Merging via Game Theory and Branch Model Predictive Control\",\"authors\":\"Luyao Zhang;Shaohang Han;Sergio Grammatico\",\"doi\":\"10.1109/TCST.2024.3477354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an integrated behavior and motion planning framework for the lane-merging problem. The behavior planner combines search-based planning with game theory to model vehicle interactions and plan multivehicle trajectories. Inspired by human drivers, we model the lane-merging problem as a gap selection process and determine the appropriate gap by solving a matrix game. Moreover, we introduce a branch model predictive control (BMPC) framework to account for the uncertain equilibrium strategies adopted by the surrounding vehicles, including Nash and Stackelberg strategies. A tailored numerical solver is developed to enhance computational efficiency by exploiting the tree structure inherent in BMPC. Finally, we validate our proposed integrated planner using real traffic data and demonstrate its effectiveness in handling interactions in dense traffic scenarios.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"33 4\",\"pages\":\"1258-1269\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10737675/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737675/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对车道合并问题,提出了一种综合行为与运动规划框架。行为规划将基于搜索的规划与博弈论相结合,建立车辆交互模型并规划多车轨迹。受人类驾驶员的启发,我们将车道合并问题建模为间隙选择过程,并通过求解矩阵博弈来确定合适的间隙。此外,我们还引入了分支模型预测控制(BMPC)框架来考虑周围车辆采用的不确定均衡策略,包括Nash策略和Stackelberg策略。为了提高计算效率,利用BMPC固有的树形结构,开发了一种定制的数值求解器。最后,我们使用真实交通数据验证了我们提出的集成规划器,并证明了其在密集交通场景中处理交互的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Lane Merging via Game Theory and Branch Model Predictive Control
We propose an integrated behavior and motion planning framework for the lane-merging problem. The behavior planner combines search-based planning with game theory to model vehicle interactions and plan multivehicle trajectories. Inspired by human drivers, we model the lane-merging problem as a gap selection process and determine the appropriate gap by solving a matrix game. Moreover, we introduce a branch model predictive control (BMPC) framework to account for the uncertain equilibrium strategies adopted by the surrounding vehicles, including Nash and Stackelberg strategies. A tailored numerical solver is developed to enhance computational efficiency by exploiting the tree structure inherent in BMPC. Finally, we validate our proposed integrated planner using real traffic data and demonstrate its effectiveness in handling interactions in dense traffic scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信