IF 9.1 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
Weiping Liu, Bing Guo, Jianjun He, Zhihong Li, Xiaodong Tang, Maria Lugaro, Gang Lian
{"title":"​","authors":"Weiping Liu, Bing Guo, Jianjun He, Zhihong Li, Xiaodong Tang, Maria Lugaro, Gang Lian","doi":"10.1146/annurev-nucl-121423-101021","DOIUrl":null,"url":null,"abstract":"This article reviews the development and achievements of the Jinping Underground Nuclear Astrophysics ( JUNA) experimental platform and focuses on the direct measurement of reaction rates inside or near the Gamow window in deep-underground astrophysical experiments. It discusses the advantages of conducting experiments in the deep-underground environment of the China Jinping Underground Laboratory (CJPL), which provides significant shielding from cosmic rays along with milliampere-level intensity from the JUNA accelerator. This shielding and high intensity are crucial for accurately measuring very-low-cross-section nuclear reactions essential to understanding astrophysical processes, such as the synthesis of heavy elements in stars from neutron sources and CNO cycle leakage. The manuscript also covers technological achievements, including advancements in ion sources, accelerators, detectors, and targets used in the JUNA experiment. The physics results from these experiments provide valuable data for key reactions, such as neutron source reactions and radiative capture reactions, as well as for the production of heavy elements in early stars. Future plans for the JUNA experiment are also outlined.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"22 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress of the Jinping Underground Nuclear Astrophysics ( JUNA) Experimental Platform\",\"authors\":\"Weiping Liu, Bing Guo, Jianjun He, Zhihong Li, Xiaodong Tang, Maria Lugaro, Gang Lian\",\"doi\":\"10.1146/annurev-nucl-121423-101021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article reviews the development and achievements of the Jinping Underground Nuclear Astrophysics ( JUNA) experimental platform and focuses on the direct measurement of reaction rates inside or near the Gamow window in deep-underground astrophysical experiments. It discusses the advantages of conducting experiments in the deep-underground environment of the China Jinping Underground Laboratory (CJPL), which provides significant shielding from cosmic rays along with milliampere-level intensity from the JUNA accelerator. This shielding and high intensity are crucial for accurately measuring very-low-cross-section nuclear reactions essential to understanding astrophysical processes, such as the synthesis of heavy elements in stars from neutron sources and CNO cycle leakage. The manuscript also covers technological achievements, including advancements in ion sources, accelerators, detectors, and targets used in the JUNA experiment. The physics results from these experiments provide valuable data for key reactions, such as neutron source reactions and radiative capture reactions, as well as for the production of heavy elements in early stars. Future plans for the JUNA experiment are also outlined.\",\"PeriodicalId\":8090,\"journal\":{\"name\":\"Annual Review of Nuclear and Particle Science\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Nuclear and Particle Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-121423-101021\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-121423-101021","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

​​这种屏蔽和高强度对于精确测量非常低截面的核反应至关重要,这对于理解天体物理过程至关重要,例如从中子源合成恒星中的重元素和CNO循环泄漏。该手稿还涵盖了技术成就,包括离子源、加速器、探测器和JUNA实验中使用的目标的进展。这些实验的物理结果为关键反应提供了有价值的数据,如中子源反应和辐射捕获反应,以及早期恒星中重元素的产生。JUNA实验的未来计划也被概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress of the Jinping Underground Nuclear Astrophysics ( JUNA) Experimental Platform
This article reviews the development and achievements of the Jinping Underground Nuclear Astrophysics ( JUNA) experimental platform and focuses on the direct measurement of reaction rates inside or near the Gamow window in deep-underground astrophysical experiments. It discusses the advantages of conducting experiments in the deep-underground environment of the China Jinping Underground Laboratory (CJPL), which provides significant shielding from cosmic rays along with milliampere-level intensity from the JUNA accelerator. This shielding and high intensity are crucial for accurately measuring very-low-cross-section nuclear reactions essential to understanding astrophysical processes, such as the synthesis of heavy elements in stars from neutron sources and CNO cycle leakage. The manuscript also covers technological achievements, including advancements in ion sources, accelerators, detectors, and targets used in the JUNA experiment. The physics results from these experiments provide valuable data for key reactions, such as neutron source reactions and radiative capture reactions, as well as for the production of heavy elements in early stars. Future plans for the JUNA experiment are also outlined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.50
自引率
0.80%
发文量
18
期刊介绍: The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation. One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信