{"title":"核心坍缩超新星和中子星合并中的中微子振荡","authors":"Lucas Johns, Sherwood Richers, Meng-Ru Wu","doi":"10.1146/annurev-nucl-121423-100853","DOIUrl":null,"url":null,"abstract":"Accurate neutrino transport is crucial for reliably modeling explosive astrophysical events like core-collapse supernovae (CCSNe) and neutron star mergers (NSMs). However, in these extremely neutrino-dense systems, flavor oscillations exhibit challenging nonlinear effects rooted in neutrino–neutrino forward scattering. Evidence is quickly accumulating that these collective phenomena can substantially affect explosion dynamics, neutrino and gravitational-wave signals, nucleosynthesis, and kilonova light curves. We review the progress made so far on the difficult and conceptually deep question of how to correctly include this physics in simulations of CCSNe and NSMs. Our aim is to take a broad view of where the problem stands and provide a critical assessment of where it is headed.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"22 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrino Oscillations in Core-Collapse Supernovae and Neutron Star Mergers\",\"authors\":\"Lucas Johns, Sherwood Richers, Meng-Ru Wu\",\"doi\":\"10.1146/annurev-nucl-121423-100853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate neutrino transport is crucial for reliably modeling explosive astrophysical events like core-collapse supernovae (CCSNe) and neutron star mergers (NSMs). However, in these extremely neutrino-dense systems, flavor oscillations exhibit challenging nonlinear effects rooted in neutrino–neutrino forward scattering. Evidence is quickly accumulating that these collective phenomena can substantially affect explosion dynamics, neutrino and gravitational-wave signals, nucleosynthesis, and kilonova light curves. We review the progress made so far on the difficult and conceptually deep question of how to correctly include this physics in simulations of CCSNe and NSMs. Our aim is to take a broad view of where the problem stands and provide a critical assessment of where it is headed.\",\"PeriodicalId\":8090,\"journal\":{\"name\":\"Annual Review of Nuclear and Particle Science\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Nuclear and Particle Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-121423-100853\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-121423-100853","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Neutrino Oscillations in Core-Collapse Supernovae and Neutron Star Mergers
Accurate neutrino transport is crucial for reliably modeling explosive astrophysical events like core-collapse supernovae (CCSNe) and neutron star mergers (NSMs). However, in these extremely neutrino-dense systems, flavor oscillations exhibit challenging nonlinear effects rooted in neutrino–neutrino forward scattering. Evidence is quickly accumulating that these collective phenomena can substantially affect explosion dynamics, neutrino and gravitational-wave signals, nucleosynthesis, and kilonova light curves. We review the progress made so far on the difficult and conceptually deep question of how to correctly include this physics in simulations of CCSNe and NSMs. Our aim is to take a broad view of where the problem stands and provide a critical assessment of where it is headed.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.