具有双氢键协同作用的快速充电MXene/TiN约束In2Se3阳极用于高容量铵离子存储

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ayesha Irfan, Inaam Ullah, Mai Li, Xiang Peng, Salamat Ali, Muhammad Zubair Nawaz, Ping Zhong, Renchao Che
{"title":"具有双氢键协同作用的快速充电MXene/TiN约束In2Se3阳极用于高容量铵离子存储","authors":"Ayesha Irfan, Inaam Ullah, Mai Li, Xiang Peng, Salamat Ali, Muhammad Zubair Nawaz, Ping Zhong, Renchao Che","doi":"10.1002/adma.202509246","DOIUrl":null,"url":null,"abstract":"Aqueous ammonium‐ion (NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup>) based hybrid pseudocapacitors (NH‐HPCs) integrate sustainability and cost‐effectiveness, yet their cycling stability is critically challenged by sluggish NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> transport, particularly in MXene‐based anodes. Herein, NH<jats:sub>3</jats:sub>‐induced N‐functionalization fabricates a MXene/TiN conductive substrate, enabling confined rotary hydrothermal growth of indium selenide (In<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>) nanoparticles into an In<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>@MXene/TiN heterostructure. Directional Ti─N bonds suppress MXene stacking and In<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> agglomeration while synergizing charge‐redistribution‐induced lattice strain with hierarchical 2–5 nm pore channels, enabling ultrafast NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> migration. Density functional theory (DFT) calculations confirm electron‐deficient Ti sites and dual Se···H─N/Ti─N···H hydrogen bonds enhance NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> adsorption, where intensified charge polarization and optimized orbital hybridization boost ion storage kinetics and structural stability. The heterostructure anode delivers 1776.1 F g<jats:sup>−1</jats:sup> at 1 A g<jats:sup>−1</jats:sup> with 98.84% capacitance retention over 6000 cycles. In full‐cell configuration (In<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>@MXene/TiN//AC), the NH‐HPC achieves 85.45 Wh kg<jats:sup>−1</jats:sup> at 800 W kg<jats:sup>−1</jats:sup>—powering a commercial mini‐fan for &gt;4 min after 30 s charging. A modular pouch‐cell version reaches 98.2 Wh kg<jats:sup>−1</jats:sup> (800 W kg<jats:sup>−1</jats:sup>), demonstrating exceptional stability during bending/flame tests while operating light emitting diodes array (LEDs). This work highlights interfacial charge synergy in confined heterostructures for unprecedented NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> storage capacity and stability, advancing high‐performance ammonium‐ion energy storage.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"10 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast‐Charging MXene/TiN‐Confined In2Se3 Anode with Dual Hydrogen‐Bonding Synergy for High‐Capacity Ammonium‐Ion Storage\",\"authors\":\"Ayesha Irfan, Inaam Ullah, Mai Li, Xiang Peng, Salamat Ali, Muhammad Zubair Nawaz, Ping Zhong, Renchao Che\",\"doi\":\"10.1002/adma.202509246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous ammonium‐ion (NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup>) based hybrid pseudocapacitors (NH‐HPCs) integrate sustainability and cost‐effectiveness, yet their cycling stability is critically challenged by sluggish NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> transport, particularly in MXene‐based anodes. Herein, NH<jats:sub>3</jats:sub>‐induced N‐functionalization fabricates a MXene/TiN conductive substrate, enabling confined rotary hydrothermal growth of indium selenide (In<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>) nanoparticles into an In<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>@MXene/TiN heterostructure. Directional Ti─N bonds suppress MXene stacking and In<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> agglomeration while synergizing charge‐redistribution‐induced lattice strain with hierarchical 2–5 nm pore channels, enabling ultrafast NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> migration. Density functional theory (DFT) calculations confirm electron‐deficient Ti sites and dual Se···H─N/Ti─N···H hydrogen bonds enhance NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> adsorption, where intensified charge polarization and optimized orbital hybridization boost ion storage kinetics and structural stability. The heterostructure anode delivers 1776.1 F g<jats:sup>−1</jats:sup> at 1 A g<jats:sup>−1</jats:sup> with 98.84% capacitance retention over 6000 cycles. In full‐cell configuration (In<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>@MXene/TiN//AC), the NH‐HPC achieves 85.45 Wh kg<jats:sup>−1</jats:sup> at 800 W kg<jats:sup>−1</jats:sup>—powering a commercial mini‐fan for &gt;4 min after 30 s charging. A modular pouch‐cell version reaches 98.2 Wh kg<jats:sup>−1</jats:sup> (800 W kg<jats:sup>−1</jats:sup>), demonstrating exceptional stability during bending/flame tests while operating light emitting diodes array (LEDs). This work highlights interfacial charge synergy in confined heterostructures for unprecedented NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> storage capacity and stability, advancing high‐performance ammonium‐ion energy storage.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202509246\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202509246","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于铵离子(NH4+)的混合赝电容器(nhh - HPCs)具有可持续性和成本效益,但其循环稳定性受到NH4+传输缓慢的严重挑战,特别是在基于MXene的阳极中。本文中,NH3诱导的N功能化制备了MXene/TiN导电衬底,使硒化铟(In2Se3)纳米颗粒能够在密闭旋转水热下生长成In2Se3@MXene/TiN异质结构。定向Ti─N键抑制MXene堆积和In2Se3团聚,同时协同电荷-再分配-诱导的晶格应变与分层的2-5 nm孔隙通道,实现超快的NH4+迁移。密度泛函理论(DFT)计算证实,电子缺位和双Se··H─N/Ti─N·H氢键增强了NH4+吸附,其中电荷极化加剧和优化的轨道杂化增强了离子储存动力学和结构稳定性。异质结构阳极在1a1g−1时输出1776.1 F g−1,在6000次循环中保持98.84%的电容。在全电池配置(In2Se3@MXene/TiN//AC)中,NH - HPC在800 W kg - 1时达到85.45 Wh kg - 1,充电30秒后为商用微型风扇供电4分钟。模块化袋电池版本达到98.2 Wh kg - 1 (800 W kg - 1),在弯曲/火焰测试中表现出卓越的稳定性,同时操作发光二极管阵列(led)。这项工作强调了限制异质结构中的界面电荷协同作用,以实现前所未有的NH4+存储容量和稳定性,推进高性能铵离子储能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast‐Charging MXene/TiN‐Confined In2Se3 Anode with Dual Hydrogen‐Bonding Synergy for High‐Capacity Ammonium‐Ion Storage
Aqueous ammonium‐ion (NH4+) based hybrid pseudocapacitors (NH‐HPCs) integrate sustainability and cost‐effectiveness, yet their cycling stability is critically challenged by sluggish NH4+ transport, particularly in MXene‐based anodes. Herein, NH3‐induced N‐functionalization fabricates a MXene/TiN conductive substrate, enabling confined rotary hydrothermal growth of indium selenide (In2Se3) nanoparticles into an In2Se3@MXene/TiN heterostructure. Directional Ti─N bonds suppress MXene stacking and In2Se3 agglomeration while synergizing charge‐redistribution‐induced lattice strain with hierarchical 2–5 nm pore channels, enabling ultrafast NH4+ migration. Density functional theory (DFT) calculations confirm electron‐deficient Ti sites and dual Se···H─N/Ti─N···H hydrogen bonds enhance NH4+ adsorption, where intensified charge polarization and optimized orbital hybridization boost ion storage kinetics and structural stability. The heterostructure anode delivers 1776.1 F g−1 at 1 A g−1 with 98.84% capacitance retention over 6000 cycles. In full‐cell configuration (In2Se3@MXene/TiN//AC), the NH‐HPC achieves 85.45 Wh kg−1 at 800 W kg−1—powering a commercial mini‐fan for >4 min after 30 s charging. A modular pouch‐cell version reaches 98.2 Wh kg−1 (800 W kg−1), demonstrating exceptional stability during bending/flame tests while operating light emitting diodes array (LEDs). This work highlights interfacial charge synergy in confined heterostructures for unprecedented NH4+ storage capacity and stability, advancing high‐performance ammonium‐ion energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信